МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «УЛЬЯНОВСКОЕ ВЫСШЕЕ АВИАЦИОННОЕ УЧИЛИЩЕ ГРАЖДАНСКОЙ АВИАЦИИ (ИНСТИТУТ)»

ФИЗИКА

Методические указания по выполнению лабораторной работы «Исследование магнитного поля Земли»

УДК 53(075.8) ББК ВЗ я7 Ф 50

Физика : метод. указания по выполнению лабораторной работы «Исследование магнитного поля Земли» / С. С. Леонов, В. В. Канонистов. — Ульяновск : УВАУ Γ А(И), 2015. — 10 с.

Содержат основные теоретические сведения, необходимые для выполнения работы, контрольные вопросы и рекомендуемую литературу.

Разработаны в соответствии с Федеральным государственным образовательным стандартом по дисциплине «Физика».

Предназначены для курсантов и студентов заочной формы обучения всех специализаций и профилей подготовки.

УДК 53(075.8) ББК ВЗ я7

ОГЛАВЛЕНИЕ

Лабораторная работа «Исследование магнитного поля Земли»	3
1.1. Расчетные зависимости	
1.2. Описание установки	5
1.3. Порядок выполнения работы	7
Контрольные вопросы	8
Рекомендуемая литература	9

ЛАБОРАТОРНАЯ РАБОТА

«Исследование магнитного поля Земли»

Цели работы:

- 1. Изучить основные понятия о магнитном поле Земли.
- 2. Изучить метод определения горизонтальной составляющей вектора напряженности магнитного поля Земли с помощью тангенс-буссоли.

1.1. Расчетные зависимости

Индукция и напряженность магнитного поля. Опыты Эрстеда показывают, что движущийся электрический заряд создает магнитное поле. Магнитное поле, создаваемое током I, характеризуется вектором магнитной индукции \overline{B} . Из опыта известно, что этот вектор магнитной индукции зависит от величины и направления тока, формы проводника, расстояния до рассматриваемой точки, расположения этой точки относительно тока, среды, в которой создано поле. Магнитную индукцию \overline{B} проводника с током можно рассчитать, используя закон Био — Савара — Лапласа, который в скалярной форме имеет вид

$$dB = \frac{\mu\mu_0 Idl \sin \alpha}{4\pi r^2},\tag{1}$$

где \overline{Idl} — элемент тока — вектор, совпадающий по направлению с плотностью тока, численно равный произведению тока и элемента длины проводника (рис. 1).

Расчет вектора \overline{B} по формуле (1) часто встречает математические трудности, т. к. μ для некоторых сред (например, ферромагнетиков) является функцией поля и к тому же не выражается аналитически. Поэтому вводится характеристика

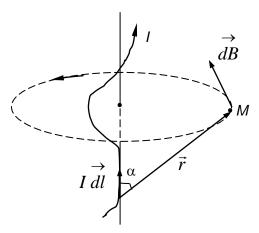


Рис. 1. Закон Био – Савара – Лапласа

магнитного поля, не зависящая от свойств среды, напряженность магнитного поля \overline{H} , которая связана с индукцией поля \overline{B} формулой

$$\vec{B} = \mu \mu_0 \vec{H} \ . \tag{2}$$

Из формулы (2) следует, что закон Био – Савара – Лапласа для вектора напряженности имеет вид:

$$dH = \frac{Idl\sin\alpha}{4\pi r^2}. (3)$$

Используя формулу (3) можно рассчитать напряженность магнитного поля (а следовательно и B) прямого тока (рис. 2) и кругового тока (рис. 3).

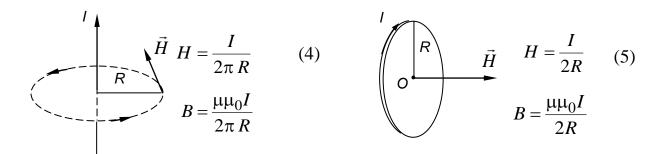


Рис. 2. Прямой ток

Рис. 3. Круговой ток

Из формулы (5) следует, что единица напряженности есть 1 А/м.

Элементы Земного магнетизма. Земля в целом представляет собой огромный шаровой магнит. В любой точке пространства около Земли и на ее поверхности обнаруживается действие магнитных сил. Иными словами, существует магнитное поле, силовые линии которого изображены на рис. 4.

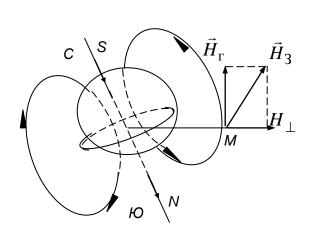


Рис. 4. Силовые линии магнитного поля

Северный магнитный полюс Земли N находится на Южном географическом полюсе HO и, наоборот, южный магнитный полюс S находится на Севере C.

Вертикальная плоскость, проходящая через силовую линию и центр Земли, называется плоскостью магнитного меридиана. Все плоскости магнитных меридианов пересекаются по прямой *NS*, а следы

магнитных меридианов на поверхности Земли сходятся в магнитных полюсах N и S.

Вектор \vec{H}_3 напряженности магнитного поля Земли в любой точке можно разложить на две составляющие: горизонтальную \vec{H}_Γ и вертикальную \vec{H}_\perp .

Существование и характер магнитного поля Земли можно установить с помощью магнитной стрелки. Если подвесить ее на нити так, чтобы точка

подвеса совпадала с центром тяжести стрелки (рис. 5), то стрелка установится по направлению касательной к линии напряженности поля Земли, т. е. по направлению вектора \vec{H}_3 .

Угол Θ , образуемый вектором \vec{H}_3 и горизонтальной плоскостью, называется **углом наклонения**. Значение Θ зависит от географической широты точки M. Так как магнитный полюс не

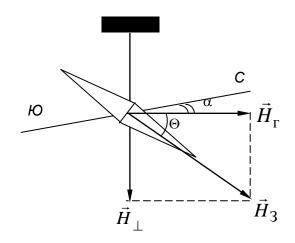


Рис. 5. Магнитная стрелка

совпадает с географическими полюсами, то стрелка будет отклоняться от географического меридиана на угол α , который называется магнитным склонением.

Горизонтальная составляющая \vec{H}_Γ , магнитное наклонение Θ и склонение α являются основными элементами земного магнетизма. Значение углов наклонения и склонения дают возможность определить \vec{H}_3 магнитного поля Земли в любой точке ее поверхности.

Если магнитная стрелка может свободно вращаться вокруг вертикальной оси, то она будет устанавливаться под действием \vec{H}_Γ магнитного поля Земли в плоскости магнитного меридиана. Этими свойствами магнитной стрелки широко пользуются для ориентировки в пространстве.

1.2. Описание установки

Основной частью лабораторной установки является тангенс-буссоль, представляющий собой плоскую вертикальную катушку радиусом R с некоторым числом витков N (рис. 6). В центре катушки находится компас с лим-

бом (буссоль), основой которого является небольшая магнитная стрелка на вертикальной оси. На лимбе буссоли нанесены деления от 0° до 360° .

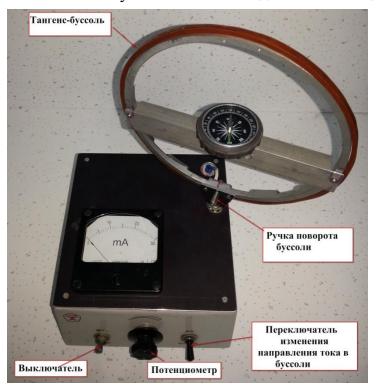


Рис. 6. Тангенс-буссоль

Определение \vec{H}_Γ основано на сравнении значения H_Γ с напряженностью магнитного поля H_I в центре кругового тока катушки. Если установить катушку в плоскости магнитного меридиана и пропустить через нее электрический ток, то стрелка буссоли под действием магнитного поля катушки и поля Земли установится по направлению результирующего поля \vec{H} , численное значение и направление которого определяются его составляющими

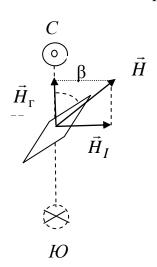


Рис. 7. Определение направления и значения \vec{H}

$$\vec{H}_{\Gamma}$$
 и \vec{H}_{I} (рис. 7).

В соответствии с законом Био – Савара – Лапласа

$$H_I = \frac{IN}{2R}. (8)$$

Зная число витков N катушки, ее радиус и силу тока в ней, можно определить H_I . По известному углу отклонения стрелки β

после включения тока и H_I определим горизонтальную составляющую напряженности магнитного поля Земли из рис. 4:

$$H_{\Gamma} = \frac{H_I}{\text{tg}\beta}.$$
 (9)

Учитывая соотношение (8) перепишем (9) в виде:

$$H_{\Gamma} = \frac{IN}{2R \operatorname{tg}\beta} = \frac{IN}{D \operatorname{tg}\beta}.$$
 (10)

Число витков катушки N и ее диаметр D указаны на макете. Силу тока измеряют миллиамперметром (мА), угол β – по лимбу буссоли.

Чтобы выяснить условия, при которых необходимо производить опыт, рассмотрим погрешность ε_H для расчетной формулы (10). Относительная погрешность косвенного измерения определяется формулой

$$\varepsilon_H = \frac{\Delta H_{\Gamma}}{H_{\Gamma}} = \frac{\Delta I}{I} + \frac{\Delta R}{R} + \frac{2\Delta\beta}{\sin(2\beta)}.$$
 (11)

Из формулы (11) следует, что погрешность ε_H будет минимальной при прочих неизменных условиях при $\beta = \frac{\pi}{4}$. Следовательно, в данном опыте следует подбирать такую силу тока, чтобы отклонение стрелки было близко к 45°.

Большая погрешность измерения H_{Γ} данным методом возникает из-за того, что трудно точно установить катушку в плоскости магнитного меридиана. Чтобы уменьшить эту погрешность, измеряют два значения силы тока I_1 и I_2 при изменении направления тока в катушке на противоположное для заданного значения угла β . В общем случае $I_1 \neq I_2$. В расчетную формулу (10) подставляют среднее значение силы тока $I = \frac{I_1 + I_2}{2}$.

В процессе измерений необходимо строго следить за точностью установки катушки в плоскости магнитного меридиана и не допускать ее смещений.

1.3. Порядок выполнения работы

1. Включить установку (см. рис. 6). Поворачивая тангенс-буссоль, установить ее плоскость в плоскости магнитного меридиана магнитного поля Земли, ориентируясь на направление магнитной стрелки.

2. Включить источник питания и реостатом установить такой ток, чтобы стрелка отклонилась от плоскости меридиана (плоскости катушки) на заданный угол β . Записать измеренное значение силы тока I_1 в таблицу. Изменить направление тока и повторить опыт для того же угла β . Произвести не менее пяти измерений. Результаты измерений и вычислений занести в следующую таблицу.

№ п/п	β	<i>I</i> _{1, M} A	I_2 , MA	I , ${\sf MA}$	$H_{_{\Gamma}},$ A/M	ϵ_{H} ,	ΔH_{Γ} , A/M	$H_{\Gamma} \pm \Delta H_{\Gamma}, \ A/M$
1								
2								
3								
4								
5								
Ср								

3. Расчет провести по формулам:

$$I = \frac{I_1 + I_2}{2};$$

$$H_I = \frac{IN}{2R t g \beta} = \frac{IN}{D t g \beta}.$$

Число витков катушки N=200, а ее диаметр D=18 см. Силу тока измеряют миллиамперметром (мА), угол β — по лимбу буссоли.

- 4. Оценить погрешности измерений, согласно формуле (11) и занести их в таблицу.
 - 5. Используя результаты измерений, сделать вывод.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Что является источником магнитного поля? Как оно может быть обнаружено?
- 2. Какими величинами характеризуется магнитное поле? Дайте определение этим величинам, назовите единицы их измерения в СИ.

- 3. Перечислите свойства магнитных силовых линий. Чем они отличаются от электрических силовых линий?
 - 4. Сформулируйте закон Био Савара Лапласа.
 - 5. Выведите расчетную формулу прямого бесконечного проводника с током.
 - 6. Выведите расчетную формулу кругового проводника с током.
- 7. Изобразите вид магнитных силовых линий поля Земли. Что такое горизонтальная составляющая вектора напряженности поля Земли?
 - 8. Какие величины определяют земной магнетизм? Дайте им определение.
 - 9. Выведите расчетную формулу для $H_{\rm r}$.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

1. Трофимова, Т. И. Курс физики / Т. И. Трофимова. – М. : Высшая школа, 2006. - 352 с.

Методические указания по выполнению лабораторной работы «Исследование магнитного поля Земли»

ФИЗИКА

Составители:

ЛЕОНОВ
Сергей Сергеевич
КАНОНИСТОВ
Владимир Васильевич

Редактор Е. А. Нестерова Компьютерная верстка И. А. Ерёминой

Подписано в печать 21.04.2015. Формат $60\times90/16$. Бумага офсетная. Печать трафаретная. Усл. печ. л. 0,63. Уч.-изд. л. 0,31. Тираж 50 экз. Заказ № 229.

РИО и типография УВАУ ГА(И). 432071, г. Ульяновск, ул. Можайского, 8/8