МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «УЛЬЯНОВСКИЙ ИНСТИТУТ ГРАЖДАНСКОЙ АВИАЦИИ ИМЕНИ ГЛАВНОГО МАРШАЛА АВИАЦИИ Б. П. БУГАЕВА»

ФИЗИКА

Тесты к лабораторным работам

В 2 частях

Часть 2 Оптика и квантовая физика. Статистическая физика и термодинамика

Рекомендовано редакционно-издательским советом института УДК 53(075.8) ББК ВЗя7 Ф50

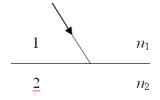
Физика: тесты к лабораторным работам: учеб.-метод. пособие: в 2 ч. Ч. 2. Оптика и квантовая физика. Статистическая физика и термодинамика / сост. Т. Н. Кодратова, С. С. Леонов. – Ульяновск: УИ ГА, 2016. – 74 с.

Содержит тесты для подготовки к выполнению лабораторных работ по разделам «Оптика и квантовая физика» и «Статистическая физика и термодинамика».

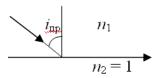
Разработано в соответствии с Федеральным государственным образовательным стандартом и рабочей программой учебной дисциплины «Физика».

Предназначено для курсантов и студентов заочной формы обучения специальности «Эксплуатация воздушных судов и организация воздушного движения», направлений подготовки «Аэронавигация», «Эксплуатация аэропортов и обеспечение полетов воздушных судов», «Техносферная безопасность», «Управление качеством».

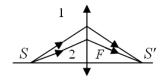
УДК 53(075.8) ББК ВЗя7

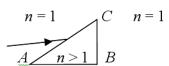

ОГЛАВЛЕНИЕ

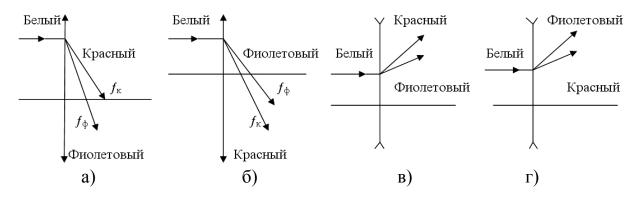
ОПТИКА И КВАНТОВАЯ ФИЗИКА4
ТЕСТ К ЛАБОРАТОРНОЙ РАБОТЕ № 1. Определение концентрации
и показателя преломления раствора методом полного внутреннего отражения4
ТЕСТ К ЛАБОРАТОРНОЙ РАБОТЕ № 2. Проверка закона Малюса
ТЕСТ К ЛАБОРАТОРНОЙ РАБОТЕ № 3. Определение концентрации
оптически активного вещества с помощью поляриметра14
ТЕСТ К ЛАБОРАТОРНОЙ РАБОТЕ № 4. Определение длины волны
монохроматического света с помощью дифракционной решетки
ТЕСТ К ЛАБОРАТОРНОЙ РАБОТЕ № 5. Исследование характеристик
теплового излучения лампы накаливания
ТЕСТ К ЛАБОРАТОРНОЙ РАБОТЕ № 6. Исследование внешнего фотоэффекта 29
ТЕСТ К ЛАБОРАТОРНОЙ РАБОТЕ № 7. Исследование явления радиоактивности 36
ТЕСТ К ЛАБОРАТОРНОЙ РАБОТЕ № 8. Кольца Ньютона40
СТАТИСТИЧЕСКАЯ ФИЗИКА И ТЕРМОДИНАМИКА46
ТЕСТ К ЛАБОРАТОРНОЙ РАБОТЕ № 1. Изменение удельной
теплоемкости воздуха при постоянном давлении
ТЕСТ К ЛАБОРАТОРНОЙ РАБОТЕ № 2. Определение отношения
молярных теплоемкостей $\frac{c_{\mu\rho}}{c_{\mu\nu}}$ для воздуха
ТЕСТ К ЛАБОРАТОРНОЙ РАБОТЕ № 3. Определение коэффициента
теплопроводности воздуха
ТЕСТ К ЛАБОРАТОРНОЙ РАБОТЕ № 4. Определение коэффициента
внутреннего трения жидкости по методу Стокса
ТЕСТ К ЛАБОРАТОРНОЙ РАБОТЕ № 5. Определение коэффициентов
внутреннего трения и длины свободного пробега молекул воздуха65
ТЕСТ К ЛАБОРАТОРНОЙ РАБОТЕ № 6. Определение удельной теплоты
кристаллизации и изменения энтропии при охлаждении олова
Рекомендуемая литература
Библиографический список

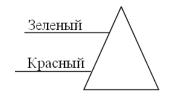

ОПТИКА И КВАНТОВАЯ ФИЗИКА

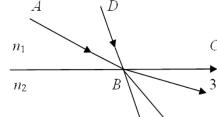
ТЕСТ К ЛАБОРАТОРНОЙ РАБОТЕ № 1. Определение концентрации и показателя преломления раствора методом полного внутреннего отражения

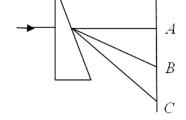

- 1. Полное внутреннее отражение наблюдается
 - а) если луч переходит из воды в стекло;
- б) если луч падает на границу раздела двух сред при условии $n_1 > n_2$;

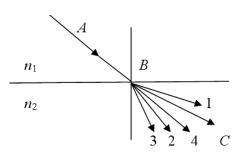

- в) если угол падения луча $I > i_{\rm np}$, где $i_{\rm np} = \arcsin \frac{1}{n_1}$;
- г) если луч переходит из менее плотной среды в более плотную.

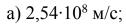

- 2. Выбрать верные утверждения:
- а) при переходе более плотной среды в менее плотную угол преломления r больше угла падения;
- б) если линзу поместить в воду, ее фокусное расстояние изменится;

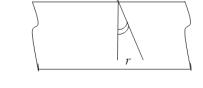

- в) расстояние наилучшего зрения для нормального глаза f = 25 см;
- Γ) лучи 1 и 2 соединятся в одной точке после преломления линзой.
- 3. Выбрать верные утверждения:
 - а) полное внутреннее отражение может наблюдаться на грани AB;
- б) $n = \frac{c}{v}$ абсолютный показатель, который всегда больше 1;


- в) чем больше показатель преломления среды n, тем больше преломляется в ней луч;
 - г) оптическая сила лупы больше 1.
 - 4. Ход лучей, выходящих из линзы, показан правильно на рисунках


- **5.** На переднюю грань прозрачной стеклянной призмы падают параллельные друг другу зеленый и красный лучи. После преломления в призме
 - а) они останутся параллельными;
 - б) они разойдутся так, что не будут пересекаться;
 - в) они пересекутся;
 - г) ответ зависит от сорта стекла.


- **6.** Луч AB преломляется на границе раздела двух сред и идет по пути BC. Если показатель преломления второй среды n_2 уменьшить, сохранив условие $n_1 > n_2$, то преломленный луч
 - а) пойдет по пути 1;
 - б) пойдет по пути 2;
 - в) пойдет по пути 3;
 - г) исчезнет.
- **7.** Луч AB преломляется в точке B на границе раздела двух сред с показателями преломления $n_1 > n_2$ и идет по пути BC. Если направить падающий луч по пути DB, то преломленный луч


- a) пойдет по пути 1;
- б) пойдет по пути 2;
- в) пойдет по пути 3;
- г) исчезнет.
- 8. Луч белого света падает на стеклянную призму. На экране будет видно
- а) в точке A белое пятно, на участке BC спектр (разноцветные пятна);
- б) в точке B белое пятно, на участках AB и BC спектр;


- в) в точке C красное пятно, в точке B фиолетовое пятно, между ними пятна остальных цветов;
- Γ) дисперсионный спектр на участке BC, в точке B красное пятно, в точке C фиолетовое, между ними пятна остальных пяти цветов.
- **9.** Луч AB преломляется в точке B на границе раздела двух сред с показателями преломления $n_1 > n_2$ и идет по пути BC. Если показатель n_1 увеличить, то луч AB пойдет по пути
 - а) 1; б) 2; в) 3; г) 4.

10. Если угол падения луча $i=45^\circ$, а угол преломления $r=30^\circ$, то скорость распространения света в веществе равна

- б) $2.13 \cdot 10^8$ м/с;
- в) $1.5 \cdot 10^8$ м/с;
- Γ) 2,81·10⁸ m/c.

Воздух

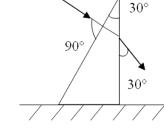
11. Если длина волны света в воздухе – 750 нм, а показатель преломления алмаза n = 2,5, то длина волны света в алмазе равна

- a) 300 HM; б) 150 нм;
- в) 1750 нм;
- г) 1875 нм.

12. Луч света падает под углом $\frac{\pi}{3}$ на границу раздела «воздух – жидкость».

Отраженный и преломленный лучи перпендикулярны друг другу. Показатель преломления жидкости равен ...

a)
$$\sqrt{3}$$
; 6) $\frac{\sqrt{3}}{3}$; B) $\sqrt{2}$; Γ) $\frac{\sqrt{2}}{2}$.

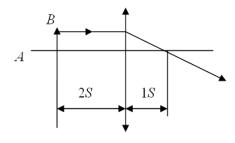

13. Абсолютный показатель преломления для воды $n_{\rm B} = 1,33$, для стекла $n_{\rm cr} = 1,6$. Полное отражение света возможно при переходе

- а) из воды в воздух;
- б) из стекла в воздух;
- в) из стекла в воду;
- г) из воды в стекло.

14. Показатели преломления относительно воздуха для воды, стекла и алмаза соответственно равны 1,33; 1,5; 2,42. Предельный угол полного отражения при выходе в воздух имеет максимальное значение

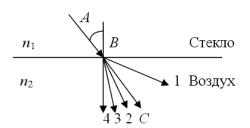
- а) в воде;
- б) в стекле;
- в) в алмазе;
- г) во всех трех веществах угол одинаков.

15. Луч, падая на призму, выходит из нее, как показано на рисунке. Показатель преломления призмы n равен


- a) 0,57;
- б) 0,58;

в) 1,73; г) 1,55.

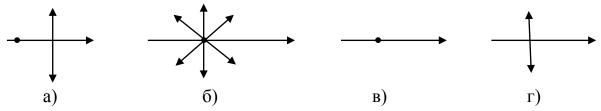
16. Увеличенное изображение предмета относительно выпуклой линзы получается, когда


- а) предмет расположен между линзой и фокусом;
- б) предмет расположен между фокусом и двойным фокусом;

- в) предмет расположен за двойным фокусом;
- г) при любом расположении предмета.
- 17. Оптическая сила линзы зависит
 - а) от показателя преломления линзы n;
 - б) от радиусов кривизны сферических поверхностей линзы;
 - в) от диаметра линзы;
 - г) от показателя преломления среды, в которой находится линза.
- **18.** Предмет находится между фокусом и линзой. Изображение предмета в рассеивающей линзе будет
 - а) уменьшенное;
 - б) прямое;
 - в) перевернутое;
 - г) мнимое.
 - 19. Выбрать верные утверждения:
 - а) $\Gamma = \frac{f}{d}$ увеличение линзы, d расстояние от предмета до линзы;
 - б) $D = (n-1) \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$ оптическая сила линзы;
 - в) $-\frac{1}{F} = \frac{1}{d} \frac{1}{f}$ формула рассеивающей линзы;
 - г) $\Gamma = \frac{0,25}{F}$ увеличение лупы; 0,25 м расстояние наилучшего зрения.
 - **20.** Линейное увеличение предмета AB равно
 - a) 2; б) 1,5; в) 0,75; г) 0,5.
- **21.** Объектив фотоаппарата является собирающей линзой. При фотографировании предмета на светочувствительной матрице получается изображение

- а) мнимое, прямое и уменьшенное;
- б) мнимое, увеличенное и прямое;
- в) прямое, увеличенное и действительное;
- г) перевернутое, действительное и уменьшенное.
- 22. Чтобы изображение предмета было действительным, его нужно поместить от рассеивающей линзы на расстоянии
 - a) 0 < d < F;
 - 6) F < d < 2F;

- в) d > 2F;
- г) при любом расстоянии изображение будет мнимым.
- 23. При рассматривании текста книги лупу держат от текста на расстоянии
 - а) произвольном;
 - б) меньше фокусного;
 - в) больше фокусного;
 - г) больше фокусного, но меньше двух фокусных.
- **24.** Угол между падающим на плоское зеркало и отраженным лучами при увеличении угла падения на 10°
 - а) не изменится;
 - б) увеличится на 10°;
 - в) увеличится на 20°;
 - г) увеличится на 5°.
- **25.** В дверном глазке наблюдается прямое уменьшенное мнимое изображение человека, на каком бы расстоянии он ни стоял. Это означает, что дверной глазок представляет собой
 - а) двояковыпуклую линзу;
 - б) плосковыпуклую линзу;
 - в) плоскую пластину;
 - г) двояковогнутую линзу.
- **26.** Луч AB преломляется в точке B на границе раздела двух сред с показателями преломления $n_1 > n_2$ и идет по пути BC. Если n_2 уменьшить, то луч AB после преломления пойдет по пути

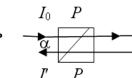


- a) 1; б) 2; в) 3; г) 4.
- **27.** Человек с нормальным зрением рассматривает предмет невооруженным глазом. На сетчатке глаза изображение предметов получается
 - а) увеличенным и прямым;
 - б) увеличенным и перевернутым;
 - в) уменьшенным и прямым;
 - г) уменьшенным и перевернутым.
 - 28. Хрусталик здорового глаза человека по форме похож на
 - а) двояковогнутую линзу;
 - б) двояковыпуклую линзу;

- в) плосковыгнутую линзу;
- г) плоскопараллельную пластину.
- **29.** R радиус кривизны зеркала. Фокус вогнутого зеркала находится от полюса на расстоянии
 - a) $\frac{R}{2}$; 6) R; B) $\frac{3R}{4}$; Γ) 2R.
- **30.** Скорость света в стекле в 1,5 раза меньше, чем в воздухе. Синус угла полного внутреннего отражения при переходе света из стекла в воздух равен
 - a) $\frac{3}{2}$; 6) $\frac{1}{6}$; B) $\frac{2}{3}$; Γ) $\frac{3}{4}$.

ТЕСТ К ЛАБОРАТОРНОЙ РАБОТЕ № 2. Проверка закона Малюса

- 1. Формула закона Малюса имеет вид
 - a) $\operatorname{tg} i_{\mathsf{B}} = n_{21};$ G) $i + r = \frac{\pi}{2};$ B) $I = I_0 \cos^2 \alpha;$ F) $\varphi = \alpha c l.$
- 2. Плоскополяризованные лучи показаны на рисунках ...

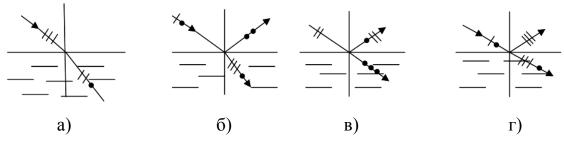

- 3. Луч естественного света можно представить себе как луч, в котором
 - а) колебания вектора \overline{E} происходят строго в одной плоскости;
 - б) колебания вектора \overline{E} происходят во всевозможных направлениях;
- в) колебания вектора \overline{E} происходят с различными частотами, амплитудами и фазами;
 - Γ) колебания вектора \overline{E} происходят с одинаковыми частотами.
- **4.** Скорость распространения необыкновенного луча e в направлении, перпендикулярном оптической оси кристалла, равна

 - 5. Выбрать неверное утверждение:
- а) если естественный свет падает на стеклянную пластину под углом Брюстера, то преломленный луч поляризуется частично;
- б) если естественный свет падает на стеклянную пластину под углом Брюстера, то отраженный луч поляризуется полностью;

9

в) если α – угол между P и A, $I_{\text{ест}}$ – интенсивность естественного света, то $I' = \frac{1}{2}I_{\text{ест}}\cos^4\alpha - \text{ин-}$ тенсивность света, выходящего из P(Z- зеркало);

$$\begin{array}{c|c}
I_{\text{ecr}} & P & A \\
\hline
I' & P & A
\end{array}$$



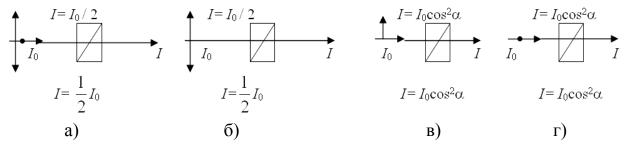
г)
$$I' = \frac{1}{2} I_0 \cos^4 \alpha$$
, если I_0 — интенсивность плоскополяризованного света.

- 6. Формула закона Брюстера имеет вид
 - a) $I = I_0 \cos^2 \alpha$;
- б) $tgi_{\rm F} = n_{21}$; в) $i_{\rm F} + r = 90^{\circ}$;
 - Γ) $\omega = \alpha c l$.
- 7. Естественный свет падает на поляризатор Р. Если поляризатор вращается вокруг направления луча, то
 - а) луч становится плоскополяризованным;
 - б) изменяется интенсивность луча;
 - в) интенсивность луча $I_0 = \frac{I_{\text{ест}}}{2}$ и не изменяется при вращении P;
 - г) направление плоскости поляризации непрерывно изменяется.
- 8. При отражении от стекла света отраженный луч полностью поляризован при угле преломления 30°. Показатель преломления стекла равен
 - a) 1,53;
- б) 1.33;
- в) 1,27;
- г) 1,73.
- 9. Свет, поляризованный по эллипсу, получается, когда ...

- в) колебания \overline{E} происходят в одной плоскости;
- г) колебания \overline{E} происходят во взаимно перпендикулярных направлениях.
- 10. Закон Брюстера используется для получения плоскополяризованного света в
 - а) призме Николя; б) поляроиде; в) стопе Столетова; г) лазере.
- 11. Интенсивность естественного света, пропущенного через два поляризатора, уменьшилась вдвое. Угол а между плоскостями поляризатора и анализатора равен
 - a) 0°: б) 30°; в) 45°; г) 90°.
- 12. При наложении двух плоскополяризованных волн получается свет, поляризованный по кругу, если
 - а) частоты волн одинаковы $\omega_1 = \omega_2$;

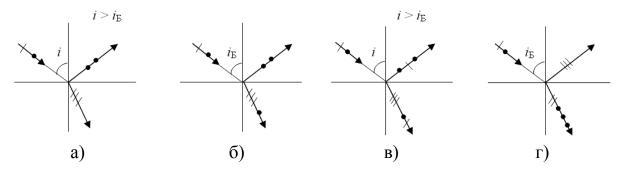
- б) колебания векторов \overline{E}_1 и \overline{E}_2 происходят во взаимно перпендикулярных плоскостях;
 - в) колебания векторов \overline{E}_1 и \overline{E}_2 сдвинуты по фазе на $\Delta\alpha=\frac{\pi}{2};$
 - г) амплитуды колебаний \overline{E}_1 и \overline{E}_2 равны.
- **13.** Луч, падающий на границу раздела двух диэлектриков под углом Брюстера, изображен на рисунке

- **14.** Оптически изотропные вещества становятся анизотропными под действием
 - а) сжатия или растяжения;
 - б) электрического поля;
 - в) магнитного поля;
 - г) облучения.
 - 15. Выбрать верные утверждения:
- а) относительная диэлектрическая проницаемость в анизотропном кристалле одинакова по всем направлениям;
- б) двойное лучепреломление наблюдается, если плоскополяризованный свет падает на двулучепреломляющий одноосный кристалл;
- в) в кристалле CaCO₃ существует направление, вдоль которого двойного лучепреломления не наблюдается;
- Γ) если плоскополяризованный свет падает на двулучепреломляющий одноосный кристалл, то интенсивность лучей o и e может быть равной.
- **16.** Частично поляризованный луч падает на поляризатор. Максимальная интенсивность луча, выходящего из P, равна


a)
$$I_{\text{ест}} + I_{\Pi,\Pi}$$
; б) $\frac{1}{2}I_{\text{ест}}$; в) $\frac{1}{2}I_{\text{ест}} + I_{\Pi,\Pi}\cos^2\alpha$; г) $I_{\Pi,\Pi} + \frac{1}{2}I_{\text{ест}}$.

17. Луч частично поляризованного света падает на поляризатор. Минимальная интенсивность луча, выходящего из P, равна

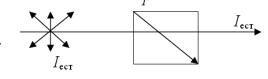
a)
$$\frac{1}{2}I_{\text{ест}} + I_{\text{п.п}};$$
 б) $\frac{1}{2}I_{\text{ест}} + \frac{1}{2}I_{\text{п.п}};$ в) $\frac{1}{2}I_{\text{п.п}};$ г) $\frac{1}{2}I_{\text{ест}}.$


- 18. Выбрать верные утверждения:
- а) в анизотропных кристаллах значение диэлектрической проницаемости є одинаково по всем направлениям;
- б) скорость света в анизотропном кристалле зависит от направления распространения;
 - в) свет проходит через скрещенные поляризатор и анализатор;
- г) если свет падает на кристалл под углом Брюстера, то отраженный и преломленный лучи взаимно перпендикулярны.
- **19.** Луч естественного света падает нормально на кристалл, преломляющая грань которого вырезана перпендикулярно оптической оси кристалла. При этом
 - а) лучи идут вдоль оптической оси с одинаковой скоростью;
 - б) лучи идут в одном направлении, луч o обгоняет луч e;
 - в) происходит поворот плоскости поляризации;
 - г) наблюдается двойное лучепреломление.
- **20.** Плоскополяризованный свет падает на анализатор. При вращении анализатора вокруг направления луча
 - а) в соответствии с законом Малюса изменяется интенсивность света;
 - б) изменяется направление плоскости колебаний;
 - в) изменяется направление плоскости поляризации;
 - г) интенсивность выходящего луча не изменяется.
 - 21. Для получения плоскополяризованного света используются
 - а) поворот плоскости поляризации оптически активным веществом;
- б) поляризация при отражении и преломлении света на границе раздела двух диэлектриков;
 - в) двойное лучепреломление;
 - г) дихроизм.
- **22.** Для получения плоскополяризованного света с помощью призмы Николя используются
 - а) дихроизм;
 - б) двойное лучепреломление;
 - в) полное внутреннее отражение;
- г) поляризация при отражении и преломлении света на границе двух диэлектриков.
 - 23. Двойное лучепреломление имеет место в
 - а) лазере; б) поляроиде; в) стопе Столетова; г) призме Николя.

- 24. Интенсивность поляризованного света в луче равна интенсивности естественного. Степень поляризации P света равна
 - a) 20 %; б) 25 %; в) 50 %; г) 75 %.
- **25.** I_{max} , I_{min} максимальная и минимальная интенсивности света, пропускаемого анализатором, если на него падает частично поляризованный свет. Степень поляризации частично поляризованного света P равна
 - a) $P = \frac{I_{\text{max}} + I_{\text{min}}}{I_{\text{max}}};$ 6) $P = \frac{I_{\text{max}}}{I_{\text{max}} + I_{\text{min}}};$ B) $P = \frac{I_{\text{max}} I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}};$ Γ) $P = \frac{I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}.$
- **26.** I_0 интенсивность света, падающего на поляризатор. Интенсивность Iвыходящего из поляризатора луча указана верно на рисунках ...

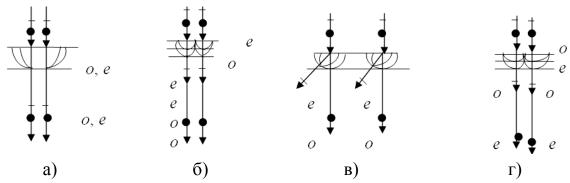
- 27. Для поляризации света служат
 - а) ячейка Керра;
 - б) поляроид;
 - в) стопа Столетова;
 - г) призма Николя.
- 28. Степень поляризации частично поляризованного света равна 0,25. Интенсивность естественного света больше интенсивности плоскополяризованного света в этом луче в
 - a) 3 pasa; 6) 4 pasa; B) $\frac{1}{3}$ pas; Γ) $\frac{1}{4}$ pas.
- 29. При падении света на двулучепреломляющий одноосный кристалл наблюдается двойное лучепреломление. I_o – интенсивность обыкновенного луча, I_e – интенсивность необыкновенного луча. Выбрать верные утверждения:
 - а) $I_o \neq I_e$, если на кристалл падает естественный свет;
 - б) $I_o = I_e$, если на кристалл падает естественный свет;
- в) $I_o = I_e$, если на кристалл падает плоскополяризованный свет, колебания \overline{E} в котором составляют угол $\alpha = 45^{\circ}$ с главным сечением кристалла;
 - г) $I_o \neq I_e$, если на кристалл падает плоскополяризованный свет.

30. Поляризация лучей показана правильно на рисунках

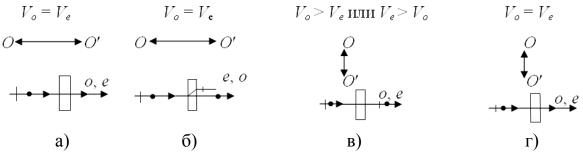

ТЕСТ К ЛАБОРАТОРНОЙ РАБОТЕ № 3. Определение концентрации оптически активного вещества с помощью поляриметра

- 1. Обыкновенный луч характеризуется тем, что
 - а) поляризован в плоскости падения;
 - б) подчиняется законам геометрической оптики;
 - в) не подчиняется законам геометрической оптики;
 - г) колебания вектора \overline{E} происходят в плоскости падения луча.
- 2. Оптически активными веществами называются вещества, в которых
 - а) наблюдается двойное лучепреломление;
 - б) наблюдается дисперсия света;
 - в) происходит поворот плоскости поляризации;
 - г) наблюдается дихроизм света.
- 3. Выбрать верные утверждения:
 - а) все прозрачные кристаллы обладают двойным лучепреломлением;
 - б) все анизотропные кристаллы поворачивают плоскость поляризации;
- в) если луч света падает на кристалл под углом Брюстера, то отраженный луч полностью поляризован в плоскости падения;
- г) если луч света распространяется вдоль оптической оси анизотропного кристалла, то двойного лучепреломления не наблюдается.
- **4.** Пластинка кварца толщиной 1 мм, вырезанная перпендикулярно оптической оси кристалла, поворачивает плоскость поляризации монохроматического света на угол $\phi_1 = 20^\circ$. Чтобы свет был полностью погашен, толщина d_2 пластинки, помещенной между двумя параллельными призмами Николя, должна быть
 - a) 2 мм; б) 2,5 мм; в) 4 мм; г) 4,5 мм.
- **5.** Угол полной поляризации при отражении света от диэлектрика, показатель преломления которого равен $\sqrt{3}$,
 - а) равен 45°;

- б) не подчиняется закону преломления света;
- в) поляризован в плоскости падения света;
- г) его скорость зависит от направления распространения в кристалле.
- 6. Выбрать верные утверждения:
 - а) все прозрачные кристаллы обладают двойным лучепреломлением;
 - б) все анизотропные кристаллы поворачивают плоскость поляризации;
- в) если луч света падает на кристалл под углом Брюстера, то отраженный луч полностью поляризован в плоскости падения;
- г) если луч света распространяется вдоль оптической оси анизотропного кристалла, то наблюдается двойное лучепреломление.
- **7.** Угол поворота плоскости поляризации в оптически активном растворе зависит
 - а) от длины l пути луча в оптически активном растворе;
 - б) от концентрации раствора C;
 - в) от рода вещества;
 - г) от угла падения.
- **8.** Скорость луча o в анизотропном одноосном кристалле в произвольном направлении равна


9. Скорость необыкновенного луча e вдоль оптической оси кристалла равна

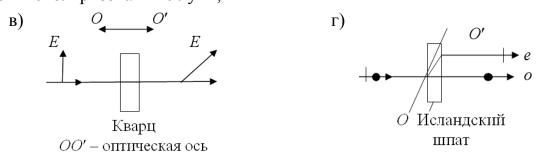
- 10. Выбрать верные утверждения:
 - а) обыкновенный луч подчиняется законам геометрической оптики;
- б) луч e при двойном лучепреломлении подчиняется закону синусов;



- в) скорость света в анизотропном кристалле зависит от направления распространения;
 - г) для случая, показанного на рисунке, $I_{\text{п.п}} = \frac{1}{2} I_{\text{ест.}}$
- **11.** Естественный луч света проходит через два поляризатора. Его интенсивность уменьшается в 4 раза. Угол α между поляризатором и анализатором равен
 - a) 0°; б) 30°; в) 45°; г) 60°.

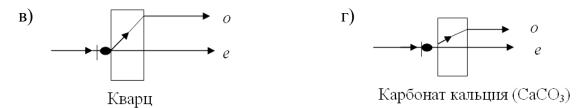
- **12.** Степень поляризации частично поляризованного света равна 0,25. Выражение $\frac{I_{\min}}{I_{\max}}$ равно
 - а) 1,25; б) 0,6; в) 4; г) 1,7.
- **13.** Волновая поверхность луча e в одноосном положительном кристалле представляет собой
- а) эллипсоид вращения, вытянутый в направлении, перпендикулярном оптической оси кристалла, и вписанный в сферу;
- б) сферу, вписанную в эллипсоид вращения, вытянутый вдоль оптической оси кристалла;
- в) эллипсоид вращения, вытянутый вдоль оптической оси кристалла и вписанный в сферу;
- г) эллипсоид вращения, вытянутый в направлении, перпендикулярном оптической оси кристалла, и описанный вокруг сферы.
- **14.** Свет падает в воздухе на диэлектрик под углом Брюстера $i_{\rm B}=600$. По-казатель преломления диэлектрика равен
 - а) 1,33; б) 1,5; в) 1,7; г) 1,6.
- **15.** Ход лучей в пластинке исландского шпата, преломляющая грань которой вырезана параллельно оптической оси, показан на рисунке

16. Луч света падает на пластинку из анизотропного кристалла. OO' – оптическая ось. Правильные ответы приведены на рисунке ...



- 17. Поляриметр служит
 - а) для определения скорости света;

- б) для определения концентрации оптически активных растворов;
- в) для определения показателя преломления вещества;
- г) для получения плоскополяризованного света.
- 18. Дихроизм используется в
 - а) стопе Столетова; б) поляроиде;
 - в) призме Николя; г) интерферометре.
- **19.** Скорость распространения обыкновенного луча o в одноосном анизотропном кристалле вдоль оптической оси равна


a)
$$c$$
; 6) $\frac{c}{\sqrt{\epsilon \mu}}$; B) $\frac{c}{\sqrt{\epsilon \perp}}$; Γ) $\frac{c}{\sqrt{\epsilon \Box}}$.

- **20.** Естественный луч падает на границу двух диэлектриков под углом Брюстера. Преломленный луч
 - а) плоскополяризован;
 - б) частично поляризован;
 - в) поляризован максимальным образом;
 - г) перпендикулярен падающему лучу.
 - 21. Выбрать верные утверждения:
- а) если луч света падает на диэлектрик под углом Брюстера, то отраженный и преломленный лучи взаимно перпендикулярны;
- б) нормальный человеческий глаз одинаково воспринимает поляризованные и неполяризованные лучи;

- **22.** Луч *е*
 - а) подчиняется законам геометрической оптики;
 - б) не подчиняется закону преломления света;
 - в) поляризован в плоскости падения света;
 - г) его скорость зависит от направления распространения в кристалле.
- 23. Выбрать верные утверждения:
- а) турмалин, кварц, исландский шпат являются одноосными анизотропными кристаллами;
- б) в кристаллах кубической формы хлорида натрия (NaCl) двойное лучепреломление не наблюдается;

17

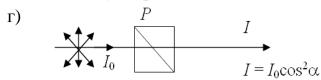
24. Выбрать неверные утверждения:

- а) все кристаллы обладают двойным лучепреломлением;
- б) кварц относится к оптически активным веществам;
- в) в стопе Столетова имеет место явление двойного лучепреломления;
- г) жидкости бывают оптически активными.

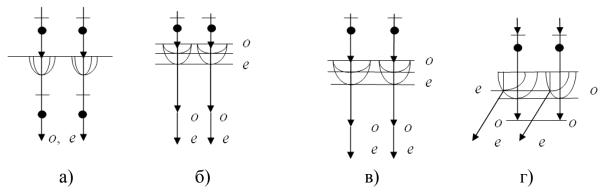
25. Выбрать верные утверждения:

- а) обыкновенный и необыкновенный лучи плоскополяризованы во взаимно перпендикулярных плоскостях;
- б) если естественный свет падает на поляризатор, то интенсивность луча, выходящего из P, уменьшается в 2 раза;
- в) если луч естественного света падает на стекло под углом Брюстера, то преломленный луч поляризуется максимально;
- г) поляриметр применяется для определения концентрации растворов оптически активных веществ.

26. Выбрать верные утверждения:


- а) если естественный луч распространяется перпендикулярно оптической оси одноосного анизотропного кристалла, то обыкновенный луч может обгонять необыкновенный;
- б) если естественный свет распространяется вдоль оптической оси кристалла, то поляризации луча не происходит;
 - в) водный раствор сахара является оптически активным веществом;
- г) под действием электрического поля оптически изотропные вещества становятся оптически анизотропными.

27. Выбрать верные утверждения:

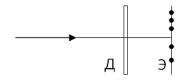

- а) вдоль оптической оси лучи o и e распространяются в анизотропном кристалле с одинаковой скоростью;
- б) если плоскополяризованный луч проходит через раствор сахара, плоскость поляризации в луче поворачивается;
 - в) степень поляризации частично поляризованного света $P = \frac{I_{\max} I_{\min}}{I_{\max} + I_{\min}}$;
- г) в анизотропном кристалле свет может не испытывать двойное лучепреломление

28. Выбрать верные утверждения:

- а) плоскость, в которой колеблется вектор магнитной напряженности \overline{H} , называется плоскостью поляризации;
- б) при двойном лучепреломлении интенсивность обыкновенного луча o равна интенсивности необыкновенного луча e, если на кристалл падает естественный свет;
 - в) двойное лучепреломление наблюдается в анизотропных кристаллах;

29. Ход лучей o и e в пластинке, преломляющая поверхность которой вырезана перпендикулярно оптической оси кристалла (одноосного и положительного), показан на рисунке

- **30.** Луч естественного света падает нормально на одноосный положительный кристалл, оптическая грань которого вырезана параллельно его оптической оси. При этом
 - а) луч o обгоняет луч e;
 - б) луч e обгоняет луч o;
 - в) лучи o и e идут в одном направлении;
 - г) наблюдается двойное лучепреломление.


ТЕСТ К ЛАБОРАТОРНОЙ РАБОТЕ № 4. Определение длины волны монохроматического света с помощью дифракционной решетки

- 1. Выбрать неверное утверждение:
- а) фронт волны является фазовой поверхностью, т. е. поверхностью, все точки которой колеблются в одной фазе;
- б) интенсивность сферической волны изменяется обратно пропорционально расстоянию r от источника света до фронта волны;

- в) в неоднородной среде фронт волны от точечного света имеет сложную форму;
 - г) волны, имеющие сферический фронт волны, называются сферическими.
- **2.** При $\lambda = 0.5$ мкм максимум пятого порядка отклонен на угол $\phi = 30^\circ$. Количество штрихов на каждый миллиметр решетки равно

г) 2000.

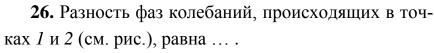
- a) 10; б) 20; в) 200;
- **3.** Максимальное число зон Френеля, укладывающихся в узкой щели шириной a, равно
- **4.** Дифракционная решетка содержит 200 штрихов на 1 мм. На решетку падает свет с длиной волны $\lambda = 0.5$ мкм. Общее число дифракционных максимумов, которое дает решетка, равно
 - а) 17; б) 19; в) 21; г) 10.
- **5**. Лазерный луч падает на решетку. На экране наблюдается серия ярких полосок. При приближении решетки к экрану
 - а) расположение пятен не изменится;
 - б) пятна исчезнут;
 - в) расстояние между пятнами увеличится;
 - г) расстояние между пятнами уменьшится.

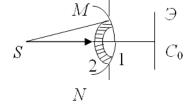
- **6.** На узкую щель шириной a падает нормально параллельный пучок света. Выбрать верные утверждения:
 - a) условие минимумов освещенности имеет вид $a\sin\theta = \pm k\lambda$;
 - б) количество зон, укладывающееся в узкой щели, равно $\frac{2a\sin\phi}{\lambda}$;
- в) минимум света может наблюдаться в центре экрана при дифракции на узкой щели;
- Γ) разность хода волн между крайними лучами, проходящими сквозь щель шириной a, равна $a\sin \varphi$.
- **7.** Амплитуда колебаний, приходящих в данную точку экрана от отдельной зоны Френеля, зависит
 - а) от площади зоны S_k ;
 - б) от расстояния r_k от зоны Френеля до данной точки;
- в) от угла ϕ между нормалью к волновой поверхности n и радиусомвектором, проведенным в данную точку экрана r;
 - г) от длины волны.

- **8.** A_1 амплитуда колебания от первой зоны Френеля. Амплитуда колебаний, приходящих в центр экрана, равна $A_1 \dots$
 - а) при закрытой первой зоне Френеля (все остальные открыты);
 - б) при открытой первой зоне Френеля (все остальные закрыты);
 - в) при полностью открытом фронте волн;
 - г) если три зоны Френеля (1, 2 и 3) открыты, а остальные закрыты.
- 9. На щель падает нормально монохроматический свет с длиной волны λ; ширина щели 6λ. Третий дифракционный минимум наблюдается под углом
 - a) 90° ; 6) 60° ; B) 30° ; Γ) 45° .
- **10.** На экране наблюдается дифракция Фраунгофера на непрозрачном диске. Выбрать верные утверждения:
- а) если диск закрывает k первых зон Френеля, то амплитуда результирующего колебания в центре экрана равна $A = \frac{A_{k+1}}{2}$;
 - б) при больших размерах диска ($d >> \lambda$) за ним наблюдается тень;
- в) при освещении диска белым светом в центре экрана наблюдается белое пятно, окруженное системой концентрических цветных колец;
- г) если диск закрывает много зон Френеля, чередование светлых и темных колец наблюдается только на границе геометрической тени.
- **11.** Расстояние от второй зоны Френеля до центра экрана, если расстояние от щели до центра экрана равно r_0 , равно

- **12.** Формула Вульфа Брэгга (ϕ угол дифракции; θ угол скольжения) имеет вид
 - a) $a \sin \theta = \pm k\lambda, k = 1, 2, 3 ...;$
 - θ 5) 2d sin θ = ±kλ, k = 1, 2, 3 ...;
 - B) $d \sin \theta = \pm k\lambda, k = 1, 2, 3 ...;$
 - Γ) $a \sin \varphi = \pm k\lambda$, $k = 1, 2, 3 \dots$
 - 13. Формула дифракционной решетки имеет вид

- **14.** Условие главных максимумов при дифракции света на дифракционной решетке имеет вид
 - a) $d \sin \varphi = \pm (2k+1)\frac{\lambda}{2}$, k = 0, 1, 2 ...; d = a + b;
 - δ) $d \sin \varphi = \pm k\lambda$;


- B) $a \sin \varphi = \pm k\lambda$;
- г) $d\sin \varphi = \pm \frac{m\lambda}{N}$, где N число щелей решетки, приходящихся на единицу длины решетки.
 - 15. Выбрать верные утверждения:
- а) с увеличением числа щелей в дифракционной решетке максимумы света на экране становятся уже и ярче;
 - б) положение максимумов на экране зависит от длины волны λ;
- в) красные лучи отклоняются при дифракции на дифракционной решетке на больший угол;
- г) в дифракционном спектре ближе к центру экрана располагаются фиолетовые полоски.
- **16.** Спектры второго и третьего порядков в видимой области дифракционной решетки частично перекрываются. Длина волны $\lambda = 700$ нм в спектре второго порядка соответствует длине волны в спектре третьего порядка, равной
 - а) 467 нм; б) 934 нм; в) 1050 нм; г) 550 нм.
- **17.** Дифракционная решетка с периодом d освещается нормально падающим световым пучком с длиной волны λ . Второй главный максимум наблюдается под углом


18. Расстояние от центра экрана до k-й зоны Френеля равно

- **19.** На дифракционную решетку, имеющую период $2 \cdot 10^{-6}$ м, нормально падает монохроматическая волна. Под углом 30° наблюдается максимум второго порядка. Длина волны падающего света равна
 - а) 500 нм; б) 600 нм; в) 250 нм; г) 400 нм.
- **20.** Разность фаз и разность хода волн, приходящих в центр экрана от двух соседних зон Френеля, равны

- **21.** Если дифракционная решетка имеет период 10 мкм, то у такой решетки на одном миллиметре расположено
 - а) 10 щелей; б) 100 щелей; в) 1000 щелей; г) 5 щелей.

- **22.** Количество зон Френеля, укладывающихся в отверстии, если на него падает плоская волна, зависит
 - а) от радиуса отверстия;
 - б) от длины волны;
 - в) от расстояния между отверстием и данной точкой на экране;
 - г) от расстояния между источником и отверстием.
- **23.** ϕ угол дифракции. Количество зон Френеля, укладывающихся в щели шириной a, равно
 - a) 2a; б) $2a\sin\varphi$; в) $a\sin\varphi$; г) $2a\sin\frac{\varphi}{\lambda}$.
- **24.** Радиус четвертой зоны Френеля для плоского волнового фронта $\rho_4 = 3$ мм. Радиус двенадцатой зоны из той же точки наблюдения равен
 - a) 5,2 мм; б) 3
- б) 3,4 мм;
- в) 6 мм;
- г) 9 мм.
- **25.** При наблюдении дифракции на круглом отверстии в белом свете в точке C_0 будет видно
 - а) темное пятнышко;
 - б) светлое пятнышко;
 - в) цветное пятнышко;
 - г) разноцветные чередующиеся кольца.

- **27.** На дифракционную решетку с периодом 3 мкм падает свет с $\lambda = 650$ нм. В этом случае наибольший порядок дифракционного максимума равен
 - a) 1; б) 2; в) 5; г) 4.
 - 28. Выбрать верное утверждение:
- а) число зон Френеля, укладывающихся в щели, увеличится, если щель вместо красного света осветить зеленым светом;
 - б) площадь третьей зоны Френеля равна площади первой зоны;
- в) на круглое отверстие падает плоская волна; амплитуда результирующего колебания в центре экрана $A = \frac{A_{\rm l}}{2} \pm \frac{A_k}{2}$, где k число зон Френеля;
- г) если в отверстии укладываются две зоны Френеля, то в центре экрана наблюдается минимум света.

- **29.** Условие минимума при дифракции света на узкой щели имеет вид a) $2a\sin\phi = \pm (2k+1)\frac{\lambda}{2};$ б) $2a\sin\phi = \pm k\lambda;$ в) $a\sin\phi = \pm (2k+1)\frac{\lambda}{2};$ г) $a\sin\phi = \pm k\lambda$.
- 30. Выбрать верные утверждения:
- а) положение максимумов освещенности, созданных дифракционной решеткой, зависит от числа щелей;
- б) разность хода волн, идущих от краев соседних щелей дифракционной решетки, выражается формулой $\Delta = d \sin \varphi$, где φ угол дифракции;
 - в) интенсивность света І пропорциональна амплитуде;
- г) четкость дифракционной картины на экране зависит от периода дифракционной решетки.

ТЕСТ К ЛАБОРАТОРНОЙ РАБОТЕ № 5. Исследование характеристик теплового излучения лампы накаливания.

1. Формула закона смещения Вина имеет вид

- 2. Выбрать верные утверждения:
 - а) нагретые жидкости имеют непрерывный спектр;
 - б) для абсолютно черных тел $\alpha_T = 1$;
 - в) энергетическая светимость тела зависит от температуры тела;
 - Γ) энергетическая светимость тела зависит от λ .
- **3.** Максимум спектральной плотности излучения Солнца приходится на видимый свет $\lambda_0 = 0.47$ мкм. Абсолютная температура солнца равна
 - а) 1500 К; б) 3000 К; в) 4000 К; г) 6000 К.
 - 4. Формула второго закона Вина имеет вид

5. Абсолютно черное тело нагрели от температуры T_1 до $T_2 = 2T_1$. Длина волны λ_0 , на которую приходится максимум $R_{\lambda T}$, изменилась на

6. Закон Кирхгофа в дифференциальной форме имеет вид

- 7. Выбрать верные утверждения:
 - а) закон смещения Вина имеет вид $\frac{v_0}{T} = b_1$, где $b_1 = 5.88 \cdot 10^{10}$ с⁻¹·K⁻¹;
- б) формула Рэлея Джинса согласуется с опытом только в области малых частот и больших температур;
- в) яркостную температуру тела можно определить с помощью пирометра с исчезающей нитью;
- г) излучательная способность абсолютно черного тела изменяется прямо пропорционально абсолютной температуре тела.
- **8.** Температура первого тела в 3 раза выше, чем у второго тела. Отношение энергетических светимостей $\frac{R_{T_1}}{R_{T_2}}$ равно
 - a) 3; б) 9; в) 27; г) 81
 - 9. Выбрать неверные утверждения:
 - а) цвет тела при нагревании изменится;
- б) при нагревании увеличится длина волны λ_0 , на которую приходится максимум спектральной плотности излучения;
 - в) черную кошку можно сфотографировать в абсолютно черной комнате;
- г) красный кружок, приклеенный на черном картоне, будет виден, если его рассматривать через зеленое стекло.
- **10.** Одно стекло пропускает желтые, зеленые и голубые лучи, другое красные, желтые и зеленые, третье зеленые, голубые и синие. Через эти стекла, сложенные вместе, пройдут лучи
 - а) оранжевые и фиолетовые;
 - б) желтые;
 - в) зеленые;
 - г) все видимые лучи.
- **11.** Черное тело нагрели до температуры T = 500 K, $C_1 = 2.9 \cdot 10^{-3}$ м · К. Длина волны λ_0 , на которую приходится максимум спектральной плотности излучения, равна
 - а) $0.058 \cdot 10^{-6}$ м и относится к ультрафиолетовому излучению;
 - б) $5.8 \cdot 10^{-6}$ м и относится к инфракрасному излучению;


- в) $0.58 \cdot 10^{-6}$ м и относится к видимому излучению;
- г) $58 \cdot 10^{-6}$ м и относится к инфракрасному излучению.
- 12. Универсальная функция Кирхгофа это
- а) спектральная плотность энергетической светимости абсолютно черного тела при температуре T и частоте ν ;
- б) отношение спектральной плотности энергетической светимости тела к его спектральной поглощательной способности;
 - в) энергетическая светимость абсолютно черного тела при температуре T;
- г) спектральная поглощательная способность тела при температуре T в интервале длин волн от λ до $\lambda + d\lambda$.
- **13.** $R_{\lambda T}$ спектральная плотность энергетической светимости. Каков физический смысл интеграла $\int_{0}^{x} R_{\lambda T} d\lambda$? Выбрать неверное утверждение:
 - а) это энергетическая светимость абсолютно черного тела;
- б) это максимальная спектральная плотность излучения абсолютно черного тела;
 - в) это величина, равная δT^4 ;
 - Γ) это энергия, излучаемая 1 M^2 за 1 с во всем мыслимом интервале волн.
- **14.** На графике показана зависимость $R_{\lambda T} = f(\lambda)$ при температуре T для абсолютно черного тела. При нагревании тела $R_{\lambda T}$
- а) доля коротковолнового излучения в спектре увеличивается;

- в) максимум кривой смещается вправо;
- г) максимум кривой смещается влево.
- 15. Температуру удаленного светящегося тела измеряют
 - а) термометром;
- б) монохроматором;
- в) термопарой;
- г) пирометром.
- 16. Энергетической светимостью тела называется энергия, излучаемая
 - а) телом за 1 с при данной температуре T;
 - б) 1 м 2 тела за 1 с при температуре T в интервале длин волн от λ_1 до λ_2 ;
 - в) 1 м 2 тела за 1 с при температуре T в интервале длин волн от 0 до ∞ ;
- Γ) телом за 1 с при данной температуре T во всем мыслимом интервале длин волн.

- 17. Выбрать верные утверждения:
- а) при понижении температуры тела максимум $R_{\lambda T}$ смещается в область длинных волн;
- б) частота v_1 , на которую приходится максимум $R_{\lambda T}$, прямо пропорциональна абсолютной температуре тела T;
- в) полная лучеиспускательная способность абсолютно черного тела пропорциональна T;
- г) полная лучеиспускательная способность абсолютно черного тела прямо пропорциональна его термодинамической температуре.
 - 18. Абсолютно черное тело видится наблюдателю
 - а) черным;
 - б) фиолетовым;
 - в) красным;
 - г) любым цветом в зависимости от температуры тела.
 - 19. Выбрать верные утверждения:
 - а) стекло поглощает инфракрасные и ультрафиолетовые лучи;
- б) тело кажется черным при полном поглощении излучения, падающего на него;
- в) тело кажется белым при полном отражении излучения, падающего на него;
- г) атмосфера Земли защищает растительный, животный мир и людей от ультрафиолетового излучения.
 - 20. Закон Кирхгофа в интегральной форме имеет вид

- 21. На рисунке показан спектр нагретого тела. Выбрать верное утверждение:
 - а) площадь, ограниченная кривой $R_{\lambda T}$, пропорциональна T^5 ;
- б) площадь, ограниченная кривой $R_{\lambda T}$, пропорциональна T^4 ;
- в) площадь, ограниченная кривой $R_{\lambda T}$, пропорциональна T^2 ;
- г) площадь, ограниченная кривой $R_{\lambda T}$, пропорциональна T.

- 22. Выбрать верные утверждения:
- а) спектральную плотность энергетической светимости абсолютно черного тела называют универсальной функцией Кирхгофа;

б) формула
$$\int_{0}^{x} R_{\lambda T} d\lambda = \delta T^{4}$$
 верна;

в) формула
$$2\pi hc^2 \int_0^x \frac{d\lambda}{\lambda^5 (e^{hc/kT\lambda} - 1)} = \delta T^4$$
 верна;

г) формула
$$R_T = \int_0^x R_{\lambda T} d\lambda$$
 верна.

- 23. Красное и голубое стекла сложены вместе. Через эту пару стекол
 - а) проходят голубые лучи;
 - б) проходят красные лучи;
 - в) проходят красные и голубые лучи;
 - г) видимые лучи не проходят.
- 24. Выбрать верные утверждения:
 - а) функция Кирхгофа зависит от λ и T;
- б) Планк теоретически вывел формулу для спектральной плотности излучения абсолютно черного тела;

в)
$$R_{\lambda T} = \frac{2\pi hc^2}{\lambda^5} \cdot \frac{1}{e^{hc/kT\lambda} - 1} -$$
формула Планка;

г)
$$R_{\lambda T} = \frac{r_{\lambda T}}{\alpha_{\lambda T}}$$
 — закон Кирхгофа.

25. Выбрать неверное утверждение:

г)
$$v_1 = \frac{b_1}{T}$$
, где $b_1 = \frac{c}{C_1}$ (c – скорость света в вакууме, $C_1 = 2.9 \cdot 10^{-3}$ м · К –

постоянная Вина).

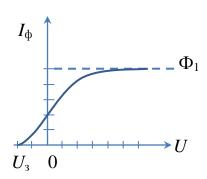
- 26. Если термодинамическая температура черного тела уменьшится в 2 раза, то его энергетическая светимость

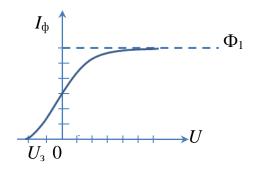
 - а) уменьшится в 4 раза; б) уменьшится в 16 раз;
 - в) увеличится в 4 раза; г) уменьшится в 8 раз.
- **27.** Тело нагрето до T = 4000 K. Максимум спектральной плотности энергетической светимости лежит
 - а) в видимой области излучения;
 - б) в инфракрасной области излучения;
 - в) в ультрафиолетовой области спектра;
 - г) в области рентгеновского излучения.

- 28. Закон, открытый экспериментальным путем, называется
 - а) законом Стефана Больцмана;
 - б) законом Кирхгофа;
 - в) законом смещения Вина;
 - г) законом Рэлея Джинса.
- 29. Выбрать верные утверждения:

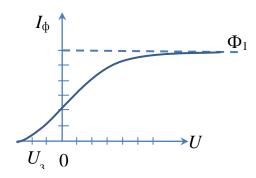
a)
$$2\pi hc^2 \int_0^x \frac{d\lambda}{\lambda^5 (e^{hc/kT\lambda} - 1)} = \delta T^4$$
;

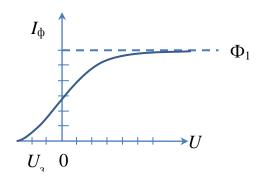
- б) если тело сильнее других поглощает красные лучи, то и сильнее их излучает;
- в) с изменением температуры тела меняется не только излучение тела, но и его поглощение;
 - г) твердые тела при нагревании дают спектры испускания.
- **30.** Абсолютно черное тело находится при T = 2900 K. В результате остывания тела длина волны λ_0 , на которую приходится $(R_{\lambda T})_{\max}$, изменилась на $\Delta \lambda = 9$ мкм. Тело охладилось до температуры T_2 , равной
 - a) 290 K;
- б) 280 К; в) 300 К; г) 270 К.


ТЕСТ К ЛАБОРАТОРНОЙ РАБОТЕ № 6. Исследование внешнего фотоэффекта


- 1. Выбрать верные утверждения:
 - а) фотоэффект наблюдается, если $v > v_0$, где $v_0 = \frac{A}{h}$;
- б) при внешнем фотоэффекте скорость выбитых из катода электронов зависит от интенсивного света, падающего на катод;
 - в) под действием света вещество теряет только отрицательные заряды;
- г) если $h\omega > A$, то фотоэффект наблюдается (A работа выхода электронов из металла).
 - **2.** Масса фотона равна
 - a) $\frac{h}{\lambda}$; 6) $\frac{h}{\lambda c}$; B) $\frac{hv}{c^2}$; Γ) $\frac{hv}{\lambda}$.
 - 3. Выбрать неверное утверждение:
 - а) покоящихся фотонов не существует;
 - б) масса фотона пропорциональна его частоте;

- в) фотон квант электромагнитного поля;
- г) импульс фотона прямо пропорционален его скорости.
- **4.** Лазер мощностью 1 мВт генерирует излучение с $\lambda = 0.6$ мкм. Лазер испускает фотоны, масса которых $9,1 \cdot 10^{-31}$ кг, за ...
 - a) $8 \cdot 10^{-8}$ c; 6) $8 \cdot 10^{-9}$ c; b) $8 \cdot 10^{-10}$ c; Γ) $8 \cdot 10^{-11}$ c.
 - **5.** Энергия фотона равна
 - a) $\frac{hc}{\lambda}$; 6) hv; B) $h\omega$; Γ) $\frac{hv}{c}$.
 - 6. Выбрать верные утверждения:
 - а) если $\frac{1}{2}mV_{\max}^2 = eU_3$, то величина фототока $I_{\phi} = 0$;
- б) определить работу выхода электрона из металла возможно, зная частоту света, падающего на катод, и запирающее напряжение U_3 ;
- в) работа выхода электрона из катода зависит от частоты света, падающего на фотокатод;
- г) число фотоэлектронов изменяется при изменении интенсивности света, падающего на катод.
- 7. Работа выхода электронов для золота равна 4,59 эВ. Поверхностный скачок потенциала равен
 - в) 3,59 В; г) 4,59 В. a) 2,89 B; б) 3 B;
- 8. Частота падающего на катод излучения уменьшается вдвое. Задерживающее напряжение нужно \dots (работой выхода A пренебречь).
 - а) увеличить в 2 раза;
- б) уменьшить в 2 раза;
- в) увеличить в $\sqrt{2}$ раз; г) уменьшить в $\sqrt{2}$ раз.
- 9. Вылетающие при фотоэффекте электроны задерживаются напряжением U_3 . Максимальная скорость электронов равна


B)
$$\sqrt{\frac{2eU_3}{m}}$$
; Γ) $\frac{eU_3}{m}$.


10. Представлена вольт-амперная характеристика фотоэлемента. Если, не изменяя частоты света, увеличить световой поток Ф, падающий на К, то вольтамперная характеристика будет иметь вид, представленный на рисунке ... /

a) 6)



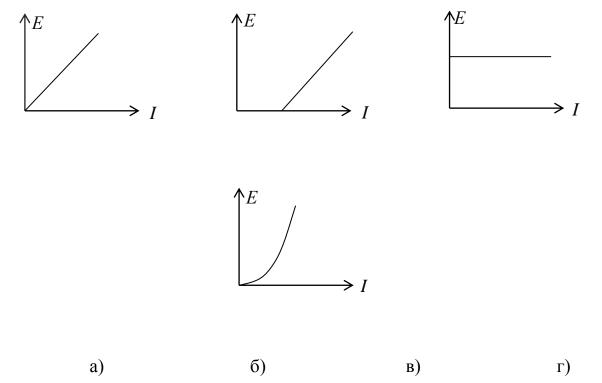
в)

- **11.** Работа выхода электрона из пластины равна 2 эВ. Пластина освещается монохроматическим светом. Энергия фотонов падающего света при $U_3 = 1,5$ В равна
 - а) 0,5 эВ; б) 1,5 эВ; в) 2 эВ; г) 3,5 эВ.
- **12.** Интенсивность света, падающего на фотокатод при неизменной частоте, уменьшили. При этом произошло уменьшение
 - а) скорости фотоэлектронов;
 - б) числа выбитых из катода электронов;
 - в) энергии фотоэлектронов;
 - г) работы выхода фотоэлектронов из катода.
- **13.** При увеличении угла падения α на плоский фотокатод монохроматического излучения с длиной волны λ максимальная кинетическая энергия фотоэлектронов
 - а) возрастает;
 - б) уменьшается;

- в) возрастает при увеличении длины волны и уменьшается при уменьшении длины волны падающего излучения;
 - г) не изменяется.
- **14.** Работа выхода электрона из металла A = 3 эВ. Длина волн, при облучении которыми фотоэффект не наблюдается, равна
 - а) 500 нм;
 - б) 400 нм;
- в) 380 нм;
- г) 650 нм.
- 15. На рисунке показаны графики зависимости максимальной энергии фотоэлектронов от энергии падающих на фотокатод фотонов. Материал фотокатода имеет меньшую работу выхода

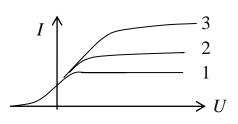
- б) во втором случае;
- в) в трех случаях одинаковую;
- г) в третьем случае.
- 16. Если длина волны излучения, вызывающего фотоэффект, уменьшается вдвое, то величина U_3 ... (работой выхода A пренебречь).
 - в) в 2 раза убывает; г) в $\sqrt{2}$ раз возрастает. а) возрастает; б) убывает;
 - 17. Формула Эйнштейна для фотоэффекта имеет вид

a)
$$\frac{1}{2}mV_{\text{max}}^2 = eU_3$$
; б) $h\omega = A + \frac{1}{2}mV_{\text{max}}^2$; в) $A = hv_{\text{min}}$; г) $hv = A + \frac{1}{2}mV_{\text{max}}^2$.


- 18. Выбрать верные утверждения:
- а) скорость выбитых фотоэлектронов зависит от частоты света, падающего на катод;
- б) скорость выбитых фотоэлектронов зависит от интенсивности света, падающего на катод;
 - в) измерив U_3 , можно определить частоту падающего на катод излучения;
 - г) под действием света вещество теряет только отрицательные заряды.
- **19.** Работа выхода $A = 3.3 \cdot 10^{-19}$ Дж. Наименьшая частота света, при которой наблюдается фотоэффект, равна

- а) $5 \cdot 10^{14} \, \Gamma$ ц; б) $2 \cdot 10^{15} \, \Gamma$ ц; в) $2 \cdot 10^{14} \, \Gamma$ ц; г) $0,5 \cdot 10^{14} \, \Gamma$ ц.
- 20. Выбрать верные утверждения:
- а) если на катод попадает ультрафиолетовое излучение, то при U=0 величина фототока $I_{\phi} = 0$ (*U* – ускоряющее напряжение);
- б) величина фототока пропорциональна частоте света, падающего на катод ($I_{\phi} \sim v$);

- в) величина фототока пропорциональна интенсивности света, падающего на фотокатод;
- г) при поглощении света катодом не всякий поглощенный фотон выбивает фотоэлектрон.
 - 21. Кинетическая энергия фотоэлектронов, выбитых из катода, зависит
 - а) от работы выхода электронов из катода;
 - б) от частоты света, падающего на катод;
 - в) от интенсивности света, падающего на катод;
 - г) от запирающего напряжения.
- **22.** Если работа по полному торможению фотоэлектронов электрическим полем равна работе выхода A, то частота квантов, вызывающих фотоэффект, равна


a)
$$2\frac{A}{h}$$
; б) $\frac{A}{h}$; в) $\frac{eU}{h}$; г) $\frac{eU}{A}$.

- **23.** Энергия фотона, поглощенного при фотоэффекте, равна E. Кинетическая энергия электрона E_{κ} , вылетевшего из катода под действием этого фотона, ...
 - а) больше E; б) меньше E; в) равна E; г) равна 0.
- **24.** Фототок насыщения в фотоэффекте при уменьшении интенсивности падающего света
 - а) увеличивается;
 - б) не изменяется;
 - в) уменьшается;
 - г) изменяется по направлению.
- **25.** Зависимость кинетической энергии E электронов, вылетающих из катода в результате фотоэффекта, от интенсивности падающего света I, показана на рисунке

- 26. Выбрать неверное утверждение:
 - а) под действием света вещество теряет только отрицательные заряды;
- б) если на катод падает световой поток, а ускоряющее напряжение U=0, то фототок существует;
- в) ультрафиолетовое излучение не вызывает фотоэффект в видимом диапазоне;
 - г) если $h\omega > A$, то фотоэффект наблюдается (A работа выхода).
 - 27. Выбрать верные утверждения:
- а) задерживающее напряжение U_3 зависит от максимальной кинетической энергии, которую имеют вырванные светом фотоэлектроны;
- б) кинетическая энергия вырываемых светом электронов зависит от частоты света;
- в) чем больше частота света, падающего на катод, тем больше задерживающее напряжение;
- г) чем больше длина волны света, падающего на катод, тем больше величина задерживающего напряжения.
- **28.** Максимальная скорость фотоэлектронов, вырываемых светом из металла, не зависит
 - а) от интенсивности света;
 - б) от площади катода;
 - в) от ускоряющего напряжения;

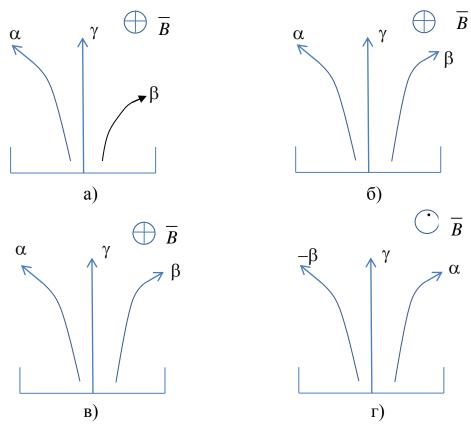
- г) от частоты света.
- 29. Величина фототока зависит
 - а) от частоты света, падающего на катод;
 - б) от интенсивности падающего на катод света;
 - в) от ускоряющего напряжения U между катодом и анодом;
 - г) от работы выхода электрона из металла.
- 30. Снимаются вольт-амперные характеристики вакуумного фотоэлемента. Максимальному числу фотонов, падающих на катод за 1 с, соответствует характеристика

a) 1; 6) 2; в) 3; г) не зависит от числа фотонов.

ТЕСТ К ЛАБОРАТОРНОЙ РАБОТЕ № 7. Исследование явления радиоактивности

- 1. Естественная радиоактивность это
 - а) самопроизвольное испускание α-частиц;
 - б) самопроизвольное испускание ядрами α-, β- и γ-лучей;
 - в) самопроизвольное испускание β-частиц;
- г) самопроизвольное превращение ядер одного химического элемента в ядра другого химического элемента.
 - 2. Закон радиоактивного распада имеет вид

a)
$$_{z}X^{A} \rightarrow _{z+1}Y^{A} + -1e$$


B)
$$a = a_0 e^{-\lambda t}$$
;

$$\Gamma) N = N_0 e^{-\lambda t}.$$

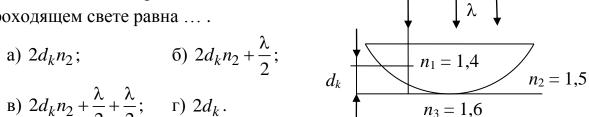
- 3. Атомные ядра имеют размер

- a) 10^{-8} m; 6) 10^{-10} m; B) 10^{-13} m; Γ) 10^{-11} – 10^{-15} m.
- **4.** Период полураспада T некоторого изотопа равен одному месяцу. Число ядер этого элемента уменьшится в 16 раз за
 - а) 3 месяца;
- б) 4 месяца;
- в) 5 месяцев;
- г) 6 месяцев.
- 5. Активность радиоактивного элемента уменьшилась в 4 раза за 8 дней. Период полураспада этого элемента равен
 - а) 32 дня;
- б) 16 дней;
- в) 4 дня; г) 2 дня.
- 6. Массовое число ядра равно
 - а) числу протонов и нейтронов, содержащихся в ядре;
 - б) числу нейтронов, содержащихся в ядре;

- в) числу нуклонов в ядре;
- г) порядковому номеру химического элемента в таблице Менделеева.
- 7. Атомное ядро состоит из
 - а) электронов; б) протонов; в) нейтронов; г) π -мезонов.
- **8.** Период полураспада радона T равен 3,8 дня. Масса радона уменьшится в 64 раза за
 - а) 3,8 дня; б) 38 дней; в) 19 дней; г) 22,8 дня.
 - 9. Активность радиоактивного элемента зависит
 - а) от числа нераспавшихся ядер N;
 - б) от периода полураспада T;
 - в) от постоянной радиоактивного распада λ ;
 - г) от температуры внешней среды.
 - 10. Выбрать верные утверждения:
 - а) масса протона приблизительно равна атомной единице массы;
- б) массовое число ядра равно округленной до целого атомной массе элемента;
- в) масса покоя ядра $M_n < Zm_p + Nm_n$, где Z число протонов, N число нейтронов в ядре;
- г) для стационарного течения цепной реакции коэффициент размножения нейтронов должен быть равен единице.
 - 11. Выбрать неверное утверждение:
 - a) $M_n < Zm_p + Nm_n$;
- б) $M_n > Zm_p + Nm_n$;
- $\mathbf{B}) \Delta M = (m_p + Nm_n) M_n;$
- $\Gamma) W_{\rm CB} = \Delta M_n \cdot c^2.$
- 12. Истинно элементарными частицами являются
 - а) нейтрино; б) фотоны;
- ы; в) кварки;
- г) протоны.
- 13. Скорость распада радиоактивного элемента зависит
 - а) от периода полураспада;
 - б) от постоянной распада;
 - в) от исходного количества радиоактивного вещества;
 - г) от внешних условий среды.
- **14.** При ядерной реакции $_{25}{\rm Mn}^{55} + _1{\rm P}^1 \to {}_{26}{\rm Fe}^{55} + ...$ образуется
 - а) α-частица; б) β-частица; в) протон; г) нейтрон.
- **15.** При помещении радиоактивного препарата в магнитное поле излучение распадается на α , β и γ . Этот процесс верно представлен на рисунках

- 16. Активность радиоактивного элемента равна
 - a) $\frac{dN}{dt}$; 6) λN ; B) $a_0 e^{-\lambda t}$; Γ) $\frac{\ln 2}{\lambda}$.
- **17.** За время, равное двум периодам полураспада, распадается часть исходных радиоактивных ядер, равная

 - 18. Выбрать верные утверждения:
- а) при радиоактивном распаде выполняется закон сохранения зарядовых чисел $Z_n = \sum Z_i$;
- б) при β-распаде возникает новый химический элемент, находящийся в таблице Менделеева на одну клеточку влево от исходного элемента;
- в) при α-распаде образуется новый химический элемент, находящийся в таблице Менделеева на две клеточки влево по отношению к исходному элементу;
- г) при радиоактивном распаде выполняется закон сохранения массовых чисел $A_n = \sum A_i$.
 - 19. При самопроизвольном распаде ядра энергия
 - а) поглощается;
 - б) выделяется;

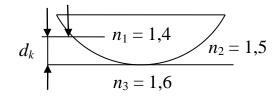

- в) не выделяется и не поглощается;
- г) выделяется только в виде электромагнитного излучения.
- **20.** Период полураспада некоторого радиоактивного элемента равен одному месяцу. Число ядер этого элемента уменьшится в 32 раза за
 - а) 4 месяца; б) 5 месяцев; в) 6 месяцев; г) 8 месяцев.
- **21.** Период полураспада изотопа $_{80}\,\mathrm{Hg}^{190}$ равен 20 минутам. Изначально было 40 г этого изотопа. Через час изотопа будет примерно
 - а) 0 г; б) 4 г; в) 2,5 г; г) 5 г.
 - 22. Зарядовое число ядра равно
 - а) числу нейтронов в ядре;
 - б) числу протонов в ядре;
 - в) числу нуклонов в ядре;
 - г) порядковому номеру химического элемента в таблице Менделеева.
- **23.** Природа сил, отклоняющих α -частицы от прямолинейной траектории в опытах Резерфорда, является
 - а) ядерной; б) гравитационной;
 - в) электромагнитной; г) электростатической.
 - 24. Плотность ядерной материи зависит
 - а) от массы ядра;
 - б) от объема ядра;
 - в) от номера элемента Z в периодической таблице Менделеева;
 - г) не зависит от вышеперечисленных факторов.
 - 25. Выбрать неверное утверждение:
 - а) порядковый номер элемента изменится при испускании ядром ү-кванта;
 - б) для замедления быстрых нейтронов можно использовать тяжелую воду;
- в) с помощью счетчика Гейгера Мюллера можно регистрировать α -частицы;
 - Γ) удельная энергия связи ядра зависит от числа нуклонов A.
- **26.** За время, равное половине периода полураспада, распадается часть радиоактивных ядер некоторого элемента, равная
 - a) 0,71; б) 0,75; в) 0,29; г) 0,25.
 - 27. При α-распаде
 - а) ядро теряет положительный заряд +2e;
 - б) масса ядра убывает на четыре атомные единицы;
 - в) масса ядра убывает на две атомные единицы;

- г) образуется ядро нового химического элемента, смещенного на две клеточки к началу периодической системы.
 - 28. Выбрать верные утверждения:
 - а) активность радиоактивного элемента $a = a_0 2^{\frac{1}{T}}$;
- б) активностью радиоактивного вещества называется число распадов в секунду;
- в) ядра урана-235 делятся под действием как быстрых, так и медленных нейтронов;
 - г) медленные нейтроны поглощаются ураном-238, не вызывая деления ядер.
 - **29.** Торий $_{90}$ Th 230 превращается в радий $_{88}$ Ra 226 в результате
 - а) одного β-распада;
 - б) одного α-распада;
 - в) одного β-распада и одного α-распада;
 - г) ү-излучения.
- **30.** Постоянная распада $\lambda = 1,354 \cdot 10^{-11} \ c^{-1}$. Активность 1 г изолированного изотопа радия-226 равна
 - а) 0,975 Ки; б) 975 Ки; в) 975 кКи; г) 9,75 Ки.

ТЕСТ К ЛАБОРАТОРНОЙ РАБОТЕ № 8. Кольца Ньютона

- 1. При переходе световой волны из одной среды в другую не изменяются
 - а) частота; б) период; в) скорость; г) длина волны.
- **2.** Два когерентных луча с длинами волн 404 нм пересекаются в одной точке на экране. Оптическая разность хода лучей $\Delta = 17,17$ мкм. В этом случае будет наблюдаться
 - а) усиление света, k = 42; б) ослабление света, k = 43;
 - в) ослабление света, k = 85; г) усиление света, k = 44.
 - 3. Цвет световых волн зависит
 - а) от длины волны; б) от частоты;
 - в) от амплитуды; г) от показателя преломления среды.
- **4.** На тонкую пленку с показателем преломления n перпендикулярно ее поверхности падает пучок монохроматических лучей. Пленка находится в воздухе. Интенсивность отраженного света максимальна при наименьшей толщине пленки, равной

- a) $\frac{\lambda}{2n}$; 6) $\frac{\lambda}{n}$; B) $\frac{(2k+1)\lambda}{2n}$; Γ) $\frac{\lambda}{4n}$.
- 5. λ разность волны падающего света. В установке для наблюдения колец Ньютона оптическая разность хода волн в проходящем свете равна
- B) $2d_k n_2 + \frac{\lambda}{2} + \frac{\lambda}{2}$; Γ) $2d_k$.



- **6.** Разность хода волн при интерференции составляет $\Delta = \frac{\lambda}{4}$. Разность фаз при этом равна
 - a) π ; 6) $\frac{\pi}{2}$; B) $\frac{\pi}{4}$; Γ) $\frac{3\pi}{4}$.
- 7. Стеклянная пластинка толщиной d освещается лучами с длиной λ . Пластинка находится в воздухе. Если свет падает на пластинку нормально, а наблюдение ведется в отраженном свете, то условие усиления света будет иметь вид

 - B) $2dn + \frac{\lambda}{2} = k\lambda$;
- Γ) $2dn = k\lambda$.
- 8. Выбрать верные утверждения:
- а) если естественный свет падает нормально на клин, находящийся в воздухе, то на поверхности клина наблюдаются разноцветные интерференционные полюсы;
- б) если на плоскопараллельную пленку падает расходящийся пучок естественного света, то на поверхности пленки наблюдаются разноцветные интерференционные полосы;
- в) если в оптической разности хода волн укладывается четное число полуволн, то в данной точке наблюдается усиление интенсивности света;
- г) если на плоскопараллельную пластинку, находящуюся в воздухе, под углом i падает свет, то оптическая разность хода волн, отраженных от верхней и нижней поверхности пластинки, равна $\Delta = 2d\sqrt{n^2 - \sin^2 i} - \frac{\lambda}{2}$.
- **9.** Свет с длиной волны λ падает на линзу нормально (d толщина зазора между линзой и пластинкой, n — показатель преломления воды). Если между

линзой и пластинкой находится вода, то условие образования светлого кольца Ньютона в отраженном свете будет иметь вид

- B) $2dn + \frac{\lambda}{2} = \frac{(2k+1)\lambda}{2}$; Γ) $2d + \frac{\lambda}{2} = k\lambda$.
- 10. Выбрать верное утверждение:
- а) ширина интерференционной полосы в опыте Юнга зависит от номера полосы k;
 - б) естественные источники света когерентны;
 - в) длина световой волны изменяется, если она переходит из стекла в воду;
 - г) частота световой волны изменяется, если она переходит из стекла в воду.
 - 11. Световые волны когерентны, если у них совпадают
 - а) амплитуда;
 - б) фазы или постоянен сдвиг фаз;
 - в) частоты;
 - г) длины волн.
- **12.** При наблюдении колец Ньютона в отраженном свете усиление света происходит, если

- B) $2d_k n_2 + \frac{\lambda}{2} + \frac{\lambda}{2} = k\lambda$; Γ) $2d_k + \frac{\lambda}{2} + \frac{\lambda}{2} = k\lambda$.
- **13.** Свет падает нормально на стеклянную пластинку толщиной d. Пластинка находится в воздухе. Ослабление интенсивности в отраженном свете происходит, если

 - B) $2d_k = \pm k\lambda$; Γ) $2dn + \frac{\lambda}{2} = (2k+1)\frac{\lambda}{2}$.
 - 14. Оптическая сила плоско-выпуклой линзы равна
- **15.** Оптическая сила линзы равна 4 дпт. Чтобы получить изображение на расстоянии 50 см от линзы, предмет перед линзой надо поместить на расстоянии

42

- а) 25 см; б) 50 см; в) 1,5 м; г) 2 м.
- **16.** При наблюдении дифракции света от точечного источника света на круглом отверстии радиусом r число зон Френеля, укладывающихся на фронте волны, дошедшем до отверстия, равно

a)
$$\frac{k\lambda r_0 R}{R+r_0}$$
; б) $k\lambda r_0$; в) $\frac{\rho_k^2}{\lambda r_0}$; г) $\frac{r^2(R+r_0)}{\lambda r_0 R}$.

17. Усиление света при интерференции наблюдается при

a)
$$\Delta = \pm k\lambda$$
, $k = 0, 1, 2, ...$;

б)
$$\Delta = \pm (2k+1)\frac{\lambda}{2}, k = 0, 1, 2, ...;$$

B)
$$\Delta \alpha = \pm k\pi, k = 1, 2, 3, ...;$$

$$\Gamma$$
) $\Delta \alpha = \pm 2k\pi$, $k = 0, 1, 2, ...$

18. Длина волны света равна λ. Третий интерференционный минимум в опыте Юнга наблюдается на расстоянии от центра экрана, равном

a)
$$\frac{3\lambda L}{d}$$
; 6) $\frac{7\lambda L}{d}$; B) $\frac{7\lambda L}{2d}$; Γ) $\frac{3\lambda L}{2d}$.

19. На стеклянную пластинку толщиной d нормально к ее поверхности падает свет с длиной волны λ . Пластинка находится в воздухе; n — показатель преломления пластинки. Оптическая разность хода интерферирующих лучей в отраженном свете равна

a)
$$2dn$$
; 6) dn ; B) $2dn + \frac{\lambda}{2}$; Γ) $2d + \frac{\lambda}{2}$.

20. Формула амплитуды результирующего колебания при сложении двух когерентных волн в точке имеет вид

a)
$$A = A_1 + A_2$$
;

б)
$$A = A_1 - A_2$$
;

B)
$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos\Delta\alpha}$$
;

$$\Gamma) A = \sqrt{A_1^2 + A_2^2 - 2A_1A_2\cos\Delta\alpha} .$$

21. Когерентные волны от обычного источника излучения можно получить

- а) пропуская световые волны через светофильтры;
- б) с помощью двух щелей;
- в) с помощью двух зеркал (бизеркала Френеля);
- г) с помощью призм Френеля.

- **22.** Разность фаз двух волн интерферирующих лучей света равна $\frac{\pi}{2}$. Минимальная разность хода этих лучей равна
- **23.** Если между линзой и стеклянной пластинкой находится вода, то радиус темного кольца Ньютона в отраженном свете рассчитывается по формуле

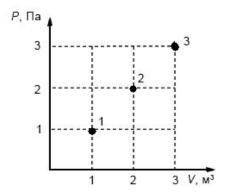
- 24. Выбрать неверные утверждения:
- а) расстояние между двумя соседними максимумами (или минимумами) называется шириной интерференционной полосы;
- б) ширина интерференционной полосы на экране в опыте Юнга равна $\Delta y = \frac{\lambda L}{d};$
- в) если щели в опыте Юнга освещаются белым светом, то в центре экрана будет наблюдаться белая полоса;
- г) если в опыте Юнга красный светофильтр заменить зеленым, то интерференционные полосы станут шире.
- **25.** При заполнении пространства между линзой и пластинкой прозрачной жидкостью с n = 1,44 радиусы светлых колец Ньютона в проходящем свете
 - а) уменьшатся в 1,2 раза;
 - б) увеличатся в 1,2 раза;
 - в) увеличатся в 1,4 раза;
 - г) уменьшатся в 1,4 раза.
- **26.** Радиус кривизны линзы равен 5 м. Длина волны света λ равна 6,5 \cdot 10⁻⁵ см. Радиус третьего красного кольца в проходящем свете на установке для получения колец Ньютона равен
 - а) 2,85 мм; б) 2,5 мм; в) 2,27 мм; г) 3,12 мм.
- **27.** Между линзой и стеклянной пластиной находится воздух. Радиус светлого кольца Ньютона в отраженном свете рассчитывается по формуле

a)
$$r_k = \sqrt{\frac{k\lambda R}{n}}$$
; 6) $r_k = \sqrt{k\lambda R}$; b) $r_k = \sqrt{(2k+1)\lambda R}$; $r_k = \sqrt{(2k-1)\frac{\lambda R}{2}}$.

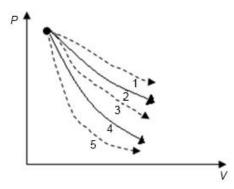
- 28. При наблюдении колец Ньютона
- а) в проходящем свете в центре интерференционной картины наблюдается минимум света (темное пятно);
- б) в отраженном свете в центре интерференционной картины наблюдается темное пятно;
- в) в отраженном свете в центре интерференционной картины наблюдается светлое пятно;
- г) в проходящем свете в центре интерференционной картины наблюдается максимум света (светлое пятно).
 - 29. Оптическая сила линзы зависит
 - а) от показателя преломления линзы n;
 - б) от радиусов кривизны сферических поверхностей линзы;
 - в) от диаметра линзы;
 - г) от показателя преломления среды, в которой находится линза.
- 30. Чтобы изображение предмета было действительным, его нужно поместить от собирающей линзы на расстоянии ...
 - а) расстоянии меньшем, чем фокусное;
 - б) расстоянии большем, чем фокусное;
 - в) любом расстоянии;
 - г) расстоянии большем, чем двойное фокусное.

СТАТИСТИЧЕСКАЯ ФИЗИКА И ТЕРМОДИНАМИКА

ТЕСТ К ЛАБОРАТОРНОЙ РАБОТЕ № 1. Изменение удельной теплоемкости воздуха при постоянном давлении

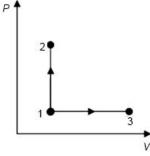

- **1.** При увеличении средней кинетической энергии идеального одноатомного газа в 2 раза и увеличении концентрации молекул в 2 раза давление
 - а) увеличится в 4 раза;
 - б) уменьшится в 2 раза;
 - в) увеличится в 2 раза;
 - г) уменьшится в 4 раза;
 - д) не изменится.
- **2.** Средняя кинетическая энергия молекулы идеального газа при температуре T равна $\varepsilon = \frac{i}{2}kT$. Здесь $n_{\text{пост}} + n_{\text{вр}} + n_{\text{колеб}}$, где $n_{\text{пост}}$, $n_{\text{вр}}$, $n_{\text{колеб}}$ число степеней свободы поступательного, вращательного и колебательного движений молекулы. Количество степеней свободы i 1) для атомарного водорода (H); 2) для водяного пара (H₂O) равно
 - а) 3; б) 1; в) 7; г) 5; д) 6; е) 8.
- 3. Средняя кинетическая энергия молекулы идеального газа при температуре T равна $\varepsilon = \frac{i}{2} kT$. Здесь $n_{\text{пост}} + n_{\text{вр}} + n_{\text{колеб}}$, где $n_{\text{пост}}$, $n_{\text{вр}}$, $n_{\text{колеб}}$ число степеней свободы поступательного, вращательного и колебательного движений молекулы. Для углекислого газа (CO₂) с учетом того, что молекула CO₂ линейная и имеются все виды движения, число i равно
 - a) 8; б) 3; в) 5; г) 7.
- **4.** Средняя кинетическая энергия молекулы идеального газа при температуре T равна $\varepsilon = \frac{i}{2}kT$. Здесь $n_{\text{пост}} + n_{\text{вр}} + n_{\text{колеб}}$, где $n_{\text{пост}}$, $n_{\text{вр}}$, $n_{\text{колеб}}$ число степеней свободы поступательного, вращательного и колебательного движений молекулы. При условии, что имеют место только поступательное и вращательное движение, количество степеней свободы i 1) для водяного пара (H_2O); 2) для водорода (H_2O) равно
 - а) 6; б) 3; в) 5; г) 8; д) 2; е) 7.
- **5.** Для газов а) He; б) H_2 ; в) H_2 О; г) CH_4 написать выражения для средней кинетической энергии поступательного движения молекул газа.

6. Средняя кинетическая энергия молекул газа при температуре T зависит от их структуры, что связано с возможностью различных видов движения атомов в молекуле. При условии, что имеет место только поступательное и вращательное движение, средняя энергия молекул водяного пара (H_2O) равна


a)
$$\frac{5}{2}kT$$
; 6) $3kT$; B) $\frac{7}{2}kT$; Γ) $\frac{3}{2}kT$.

7. Состояние идеального газа определяется значениями параметров T_0 , P_0 , V_0 , где T — термодинамическая температура, P — давление, V — объем газа. Определенное количество газа перевели из состояния P_0 , V_0 в состояние P_0 , $\frac{1}{2}V_0$. При этом внутренняя энергия газа

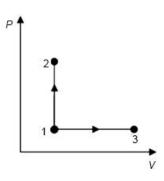
- а) уменьшилась;
- б) увеличилась;
- в) не изменилась
- **8.** На графике в координатах P, V представлены три состояния идеального газа постоянной массы. Идеальный газ имеет минимальную внутреннюю энергию в состоянии



- a) 1; б) 2; в) 3.
- **9.** Определить знак теплоемкости c в процессах 1–5, если кривая 2 изотерма, кривая 4 адиабата.

10. Найти по графику молярную теплоемкость c_1 в процессе 1—2 для следующих газов (молекулы газов считать жесткими):

- а) водяного пара (H₂O);
- б) кислорода (O_2) ;
- в) атомарного водорода (Н);
- г) метана (СН₄);
- д) азота (N₂).


- **11.** Для изохорного охлаждения газа справедливы соотношения (ΔU изменение внутренней энергии идеального газа; A – работа газа; Q – количество теплоты, сообщаемое газу)
 - a) Q < 0; A = 0; $\Delta U < 0$;
- δ) Q = 0; A > 0; $\Delta U < 0$;
- B) Q < 0; A < 0; $\Delta U = 0$; Γ) Q < 0; A < 0; $\Delta U < 0$.
- 12. Соотнести виды изопроцесса и уравнения первого начала термодинамики:

Вид изопроцесса	Уравнение первого		
Вид изопроцесса	начала термодинамики		
а) изотермический	1) dQ = dU + pdV		
б) изохорный	2) dQ = dA		
в) адиабатный	3) dU + pdV = 0		
г) изобарный	4) dQ = pdV		

- 13. Соотношения 1) больше нуля; 2) меньше нуля; 3) равно нулю справедливы для изменения внутренней энергии идеального газа (ΔU) для следующих процессов
 - а) адиабатического расширения;
 - б) адиабатического сжатия;
 - в) изотермического расширения;
 - г) изотермического сжатия.
- 14. Одноатомный идеальный газ совершает работу, равную 3 кДж. Количество теплоты, полученное газом, равно
 - б) 3 кДж; а) 1 кДж; в) 4 кДж.
- 15. Одноатомный идеальный газ в количестве 4 молей поглощает количество теплоты Q. При этом температура газа повышается на 20 К. Работа газа в этом процессе равна 1 кДж. Поглощенное количество теплоты равно
 - а) 0,5 кДж; б) 1,0 кДж; в) 1.5 кДж; г) 2,0 кДж.
- 16. Молярные теплоемкости гелия (Не) в процессах 1—2 и 1—3 равны c_1 и c_2 соответственно. Тогда $\dfrac{c_1}{c_2}$ со-

ставляет

a)
$$\frac{7}{5}$$
; 6) $\frac{3}{5}$; B) $\frac{5}{7}$; Γ) $\frac{5}{3}$.

- **17.** Средняя кинетическая энергия молекул газа при температуре T зависит от их структуры, что связано с возможностью различных видов движения атомов в молекуле. Средняя кинетическая энергия молекул гелия (He) равна
 - a) $\frac{5}{2}kT$; 6) $\frac{3}{2}kT$; B) $\frac{7}{2}kT$; Γ) $\frac{1}{2}kT$.
- **18.** Любой газ имеет две теплоемкости: теплоемкость при постоянном давлении c_p и теплоемкость при постоянном объеме c_v . Выбрать верное утверждение:
- **19.** Два одинаковых стальных шарика, нагретых до температуры 300 °C, опустили в одинаковые сосуды. Один сосуд наполнен водой ($c=4,18\cdot 10^3$ Дж/(кг · град)), а второй машинным маслом ($c=2,1\cdot 10^3$ Дж/(кг · град)). Выбрать верное утверждение:
- а) сосуд с маслом нагреется до более высокой температуры, так как масло имеет меньшую теплоемкость;
- б) сосуд с водой нагреется до более высокой температуры, так как она имеет большую теплоемкость; τ ось
 - в) сосуд с маслом нагреется до меньшей температуры;
 - г) сосуды будут иметь одинаковую температуру.
- **20.** Более высокая теплоемкость у вещества, отмеченного на графике нагревания цифрой
 - a) 1; б) 2; в) 3.
- **21.** Провели два эксперимента. В первом нагревали стальной чайник до температуры 100 °C, а во втором нагревали этот же чайник, но заполненный водой, тоже до температуры 100 °C. Зависимость количе- ства теплоты от времени приведена на графике
 - а) 1 для чайника с водой;
 - б) 2 для чайника без воды;
 - в) I для чайника без воды;
 - Γ) 2 для чайника с водой.
- **22.** Молярная теплоемкость идеального газа при постоянном давлении равна $c_p = \frac{7}{2}R$, где $R = 8{,}31~$ Дж/(кг \cdot моль) универсальная газовая постоянная.

Число вращательных степеней свободы молекулы равно

a) 2; б) 3; в) 1; г) 0.

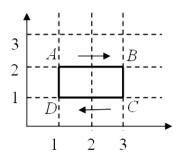
23. При комнатной температуре коэффициент Пуассона $\gamma = \frac{c_p}{c_v}$, где c_p и c_v – молярные теплоемкости при постоянном давлении и постоянном объеме соответственно, равен $\frac{4}{3}$ для

- а) водяного пара;
- б) водорода;
- в) азота;
- г) гелия.

24. В соответствии с законом равномерного распределения энергии по степеням свободы средняя кинетическая энергия молекулы идеального газа при температуре T равна $\langle E \rangle = \frac{i}{2} kT$. Здесь $i = n_{\text{пост}} + n_{\text{вр}} + 2n_{\text{колеб}}$, где $n_{\text{пост}}$, $n_{\text{вр}}$ и $n_{\text{колеб}}$ – число степеней свободы поступательного, вращательного и колебательного движений молекулы соответственно. Для водорода (H_2) число i равно

a) 7; б) 5; в) 3; г) 6.

25. Кинетическая энергия всех молекул в 2 г неона (Ne) при температуре 300 К равна ...

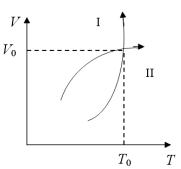

а) 374 Дж; б) 831 Дж; в) 249 Дж; г) 748 Дж.

26. При комнатной температуре отношение $\frac{c_P}{c_v}$ молярных теплоемкостей 7

при постоянном давлении и постоянном объеме равно $\frac{7}{5}$ для

- а) кислорода;
- б) водяного пара;
- в) углекислого газа;
- г) гелия.

27. На графике на координатах P, V изображен циклический процесс. Температура на участке AB



- а) понижается;
- б) повышается;
- в) может понижаться и повышаться;
- г) не изменяется.

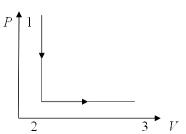
28. Если для многоатомных молекул газа при температуре 100 К вклад энергии колебания ядер в теплоемкость газа пренебрежимо мал, то из идеальных газов изохорную теплоемкость $c_v = 3R$ имеет один моль

- а) водорода;
- б) гелия;
- в) азота:
- г) водяного пара.

29. На рисунке показаны два процесса с идеальным газом: І и ІІ. Теплоемкости $c_{\rm I}(V_0,\ T_0)$ и $c_{\rm II}(V_0,\ T_0)$ при этих процессах в точке пересечения кривых I и II

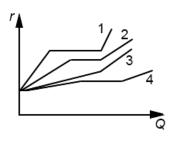
- a) $c_{I}(V_0, T_0) < c_{II}(V_0, T_0);$
- б) $c_{\rm I}(V_0, T_0) > c_{\rm II}(V_0, T_0)$;
- B) $c_{\mathbf{I}}(V_0, T_0) = c_{\mathbf{II}}(V_0, T_0)$.
- **30.** Изотерма идеального газа в координатах P, V представляет собой
 - а) параболу;
- б) прямую;
- в) гиперболу;
- г) окружность.

ТЕСТ К ЛАБОРАТОРНОЙ РАБОТЕ № 2. Определение отношения

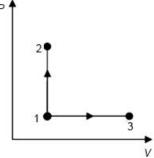

молярных теплоемкостей $\frac{c_{\mu\rho}}{c_{\mu\nu}}$ для воздуха

- **1.** Молярная теплоемкость c_{ν} молекул CO_2 (молекула линейная) при низких температурах равна

- a) $\frac{3}{2}R$; 6) $\frac{5}{2}R$; b) $\frac{9}{2}R$; Γ) $\frac{13}{2}R$.
- **2.** Молярная теплоемкость c_p молекул O_2 при высоких температурах равна
- a) $\frac{3}{2}R$; 6) $\frac{5}{2}R$; B) $\frac{7}{2}R$; Γ) $\frac{9}{2}R$.
- **3.** Правильная последовательность между отношениями $\gamma = \frac{c_p}{c}$ для идеаль-

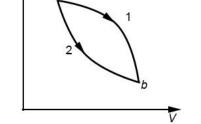

ных газов, где γ_1 – одноатомный; γ_2 – двухатомный; γ_3 – трехатомный, следующая

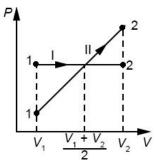
- a) $\gamma_1 < \gamma_2 < \gamma_3$;
- δ) $\gamma_1 < \gamma_2 > \gamma_3$;
- B) $\gamma_1 > \gamma_2 < \gamma_3$;
- Γ) $\gamma_1 > \gamma_2 > \gamma_3$.
- 4. Молярные теплоемкости гелия при процессах 1–2 и 2–3 обозначены соответственно через c_1 и c_2 . Разность c_1 и c_2 равна



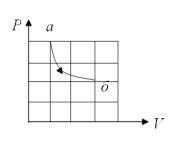
- a) 2.5R;
- \mathfrak{G}) 2R;
- в) 1,5*R*;
- Γ) 0,5R.
- **5.** Отношение $\frac{c_p}{c_v}$ для идеального двухатомного газа при умеренных тем-
- пературах равно a) 1,29;
 - б) 1,33; в) 1,40; г) 1,67.

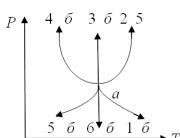
- 6. У какого из перечисленных газов: 1) одноатомного; 2) двухатомного; 3) трехатомного; 4) многоатомного средняя кинетическая энергия молекул равна ...
 - a) $\frac{3}{2}kT$;
 - б) $\frac{7}{2}kT$ (молекулы с упругой связью);
 - в) 3kT (молекулы с жесткой связью);
 - г) $\frac{5}{2}kT$ (молекулы с жесткой связью).
- 7. На рисунке приведены графики изменения температуры четырех тел одинаковой массы по мере поглощения ими энергии. В начальный момент тела находились в твердом состоянии. Жидкому состоянию тел с одинаковой теплоемкостью соответствуют графики


- a) 1, 2;
 - 6) 2, 3;в) 3, 4;
- г) 4, 1.
- **8.** Найти по графику молярную теплоемкость c_1 в процессе 1–2 для следующих газов (молекулы газов считать жесткими): а) водяного пара (H_2O); б) кислорода (O_2); в) атомарного водорода (H); Γ) метана (CH₄); Λ) азота (N₂).
- **9.** Найти по графику молярную теплоемкость c_2 в процессе 1–3 для следующих газов (молекулы газов считать жесткими): а) водяного пара (H₂O); б) кислорода (O_2) ; в) атомарного водорода (H); г) метана (CH_4) ; д) азота (N₂).


- **10.** Для адиабатного сжатия газа справедливы соотношения (ΔU изменение внутренней энергии идеального газа, A – работа газа, Q – количество теплоты, сообщаемое газу)

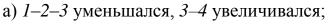
 - a) Q = 0; A < 0; $\Delta U > 0$; 6) Q = 0; A > 0; $\Delta U < 0$;
 - B) Q > 0; A > 0; $\Delta U = 0$; $\qquad \qquad \Gamma) \ Q < 0$; A < 0; $\Delta U = 0$.
- 11. Соотношения 1) больше нуля; 2) меньше нуля; 3) равно нулю справедливы для работы, совершаемой газом (A), для следующих процессов
 - а) адиабатического расширения;
 - б) адиабатического сжатия;
 - в) изотермического расширения;
 - г) изотермического сжатия.


- 12. Два различных идеальных газа одноатомный и двухатомный находятся при одинаковой температуре и занимают одинаковый объем. Газы сжимаются адиабатически до уменьшения объема в 2 раза. Газы
 - а) газы нагрелись одинаково;
 - б) одноатомный нагрелся больше;
 - в) двухатомный нагрелся больше.
- **13.** Идеальный газ переходит из состояния a в состояние b двумя способами (как показано на графике). При этом \dots

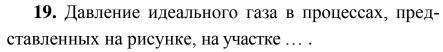


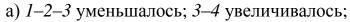
- 14. Количество теплоты, полученное идеальным газом при переходе из состояния 1 в состояние 2 разными путями (I и II), будет равно

- a) $Q_{\rm I} = Q_{\rm II}$; 6) $Q_{\rm I} > Q_{\rm II}$;
- B) $Q_{\rm I} < Q_{\rm II}$.
- 15. Давление неизменного количества идеального газа уменьшилось в 2 раза, а температура уменьшилась в 4 раза. При этом объем газа
 - а) увеличился в 8 раз;
 - б) уменьшился в 2 раза;
 - в) увеличился в 2 раза;
 - г) уменьшился в 8 раз;
 - д) не изменился.
- **16.** На рисунке в координатах P, V представлен график процесса, проведенного при постоянной массе над идеальным газом. График этого процесса в координатах P, T имеет вид



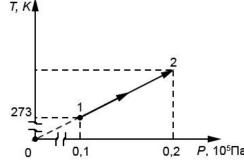
- a) 1;
- б) 2;
- в) 3;
- г) 4;
- д) 5:
- e) 6.

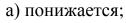

17. Объем идеального газа (m = const) в процессах, представленных на рисунке, на участке $P \uparrow$


- а) 1-2-3 уменьшался, 3-4 увеличивался;
- б) *1*–2 увеличивался, *2*–*3*–*4* уменьшался;
- в) 1-2 уменьшался, 2-3-4 увеличивался;
- Γ) 1–2–3 увеличивался, 3–4 уменьшался.

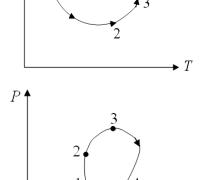
18. Объем идеального газа (m = const) в процессах, представленных на рисунке, на участке

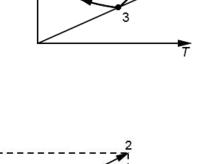
- б) *1*–2 увеличивался, *2*–*3*–*4* уменьшался;
- в) 1-2 уменьшался, 2-3-4 увеличивался;
- г) 1-2-3 увеличивался, 3-4 уменьшался.

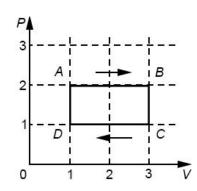

- б) 3-4 уменьшалось; 1-2-3 увеличивалось;
- в) 3-4 уменьшалось; 3-4 увеличивалось;
- Γ) 2–3–4 увеличивалось; 2–3 уменьшалось.

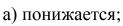


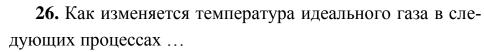
б) 27,3 К;

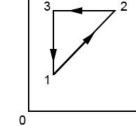

г) 1638 К.



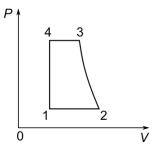

- **21.** На графике изображен циклический процесс. Температура на участке $AB\dots$
 - а) понижается;
 - б) повышается;
 - в) может понижаться или повышаться;
 - г) не изменяется.
- **22.** На графике изображен циклический процесс. Температура на участке $BC\dots$


- б) повышается;
- в) может понижаться или повышаться;
- г) не изменяется.

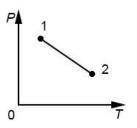




- **23.** На графике изображен циклический процесс. Температура на участке $CD\dots$
 - а) понижается;
 - б) повышается;
 - в) может понижаться или повышаться;
 - г) не изменяется.
- **24.** На графике изображен циклический процесс. Температура на участке ...

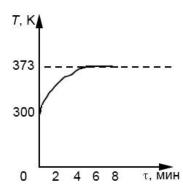


- б) повышается;
- в) может понижаться или повышаться;
- г) не изменяется.
- **25.** Представить показанный на рисунке график процесса в координатах P, T и P, V.



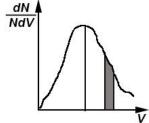
- а) адиабатическое расширение идеального газа;
- б) адиабатическое сжатие идеального газа;
- в) изобарное расширение идеального газа;
- г) изохорное сжатие идеального газа.
- **27.** Представить показанный на рисунке график цикла в координатах P, T и T, V.

- 28. В процессе, представленном на графике,
 - а) объем газа уменьшается;
 - б) объем газа увеличивается;
 - в) объем газа не изменяется;
- г) объем газа определить нельзя, так как график не является графиком изопроцесса.

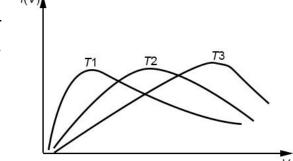

- **29.** Известно, что молярная теплоемкость газа при постоянном давлении (c_p) значительно отличается от молярной теплоемкости того же газа при постоянном объеме (c_v) . Больше теплоемкость, полученная из выражения
 - a) $c_p + c_v = R$;
- 6) $c_p = c_v + R$;
- в) $c_{v} R = c_{p}$;
- Γ) $c_v c_p = R$.
- 30. Если газ адиабатно расширяется, то температура газа
 - а) повышается;
- б) понижается;
- в) не изменяется.

ТЕСТ К ЛАБОРАТОРНОЙ РАБОТЕ № 3. Определение коэффициента теплопроводности воздуха

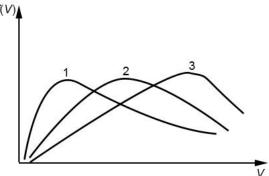
- 1 Явление теплопроводности возникает при наличии
 - а) градиента температуры;
 - б) градиента электрического заряда;
 - в) градиента концентрации;
 - г) градиента массы;
 - д) градиента скорости слоев жидкости или газа.
- 2. Явление теплопроводности характеризует перенос
 - а) электрического заряда;
 - б) массы;
 - в) импульса направленного движения слоев жидкости или газа;
 - г) энергии.
- 3. Градиенты каких величин вызывают явления
 - а) теплопроводности;
 - б) диффузии;
 - в) внутреннего трения (вязкости).
- 4. Какие явления переноса способствуют выравниванию
 - а) концентрации (плотности);
 - б) температуры;
 - в) скорости слоев жидкости и газа?
- 5. Потоки 1) тепла, 2) импульса, 3) частиц (массы) возникают при
 - а) градиенте концентрации;
 - б) градиенте скорости слоев жидкости или газа;
 - в) градиенте температуры.
- 6. Выбрать верные утверждения:
- а) теплопроводность газа состоит в переносе энергии молекулярного движения, обусловленном столкновениями между хаотически движущимися молекулами;
- б) коэффициент теплопроводности численно равен плотности потока тепла при градиенте температур, равном единице;
- в) перенос тепла за счет теплопроводности происходит тем быстрее, чем выше давление газа;
 - г) коэффициент теплопроводности растет с ростом температуры;
- д) коэффициент теплопроводности газов тем больше, чем меньше молярная масса.


- 7. Вещество имеет наибольшую теплопроводность
 - а) в жидком состоянии;
 - б) в газообразном состоянии;
 - в) в твердом состоянии.
- 8. Вещество имеет наименьшую теплопроводность
 - а) в жидком состоянии;
 - б) в газообразном состоянии;
 - в) в твердом состоянии.
- **9.** Среднее время свободного пробега молекул при изобарном нагревании газа, если объем изменится в 2 раза (эффективный диаметр молекул считать постоянным)
 - а) не изменится;
 - б) изменится в 2 раза;
 - в) изменится в $\sqrt{2}$ раза.
- **10.** При изобарическом расширении газа длина свободного пробега увеличилась в 3 раза. Среднее время свободного пробега (эффективный диаметр молекул считать постоянным) при этом
 - а) увеличится в 3 раза;
 - б) уменьшится в 3 раза;
 - в) увеличится в 9 раз;
 - г) уменьшится в $\sqrt{3}$ раз;
 - д) увеличится в $\sqrt{3}$ раз.
- **11.** Давление газа увеличилось в 2 раза. Как изменится средняя длина свободного пробега, если:
 - а) температура не изменилась;
 - б) температура увеличилась в 2 раза.
- **12.** Среднее время свободного пробега молекул при изотермическом охлаждении газа, если давление изменится в 4 раза (эффективный диаметр молекул считать постоянным)
 - а) изменится в 2 раза; б) изменится в 4 раза; в) не изменится.
- **13.** Несгораемые шкафы и сейфы имеют двойные металлические стенки, между которыми засыпана зола. Ценные бумаги, хранящиеся в таком сейфе, остаются целыми даже после пожара, потому что
 - а) у золы плохая теплопроводность;
 - б) у золы хорошая теплопроводность;
 - в) из-за градиента температуры.

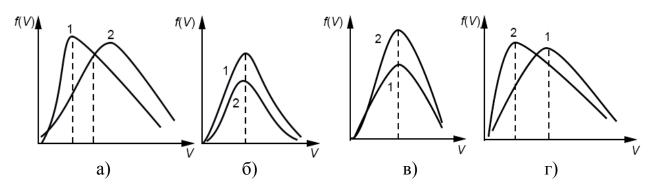
- **14.** В медицинской практике часто применяют согревающие компрессы, грелки, кварцевые лампы и массаж. При этом используются следующие способы изменения внутренней энергии
- а) конвекция, поглощение внутренней энергии, преобразование кинетической энергии в потенциальную;
- б) теплопередача, поглощение излучаемой энергии, преобразование механической энергии во внутреннюю;
- в) внутреннее трение, поглощение излучаемой энергии, преобразование механической энергии в тепловую.
 - 15. Климат островов умереннее и ровнее, чем климат материков, так как
 - а) вода обладает большой теплоемкостью;
 - б) большие массы воды прогреваются и остывают медленно;
- в) вода обладает большой теплоемкостью, поэтому резких градиентов температур больших масс воды не наблюдается.
- **16.** Кастрюлю с водой поставили на газовую плиту. Зависимость температуры воды от времени показана на рисунке. В данном случае


- а) теплоемкость воды увеличивается;
- б) теплоемкость воды уменьшается;
- в) теплоемкость воды не изменяется, так как вода начинает все больше тепла отдавать воздуху.
- **17.** Средние арифметические скорости молекул водорода (H_2) и кислорода (O_2) , находящихся при одинаковой температуре, отличаются
 - а) в 4 раза; б) в 2 раза; в) в 3 раза.
- **18.** На рисунке представлен график функции распределения молекул идеального газа по скоростям (распределение Максвелла), где

 $f(v) = \frac{dN}{Ndv}$ — доля молекул, скорости которых заключены в интервале скоростей от v до v + dv в расчете на единицу этого интервала. Заштрихованная площадь на графике равна



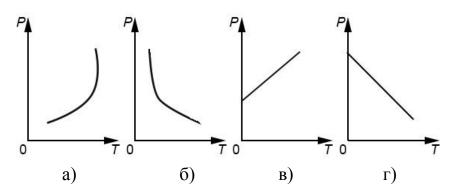
- а) относительному числу молекул, скорости которых больше средней квадратичной скорости;
- б) относительному числу молекул, скорости которых больше средней арифметической скорости;


- в) числу молекул, скорости которых лежат в интервале от средней арифметической до средней квадратичной скорости;
- г) относительному числу молекул, скорости которых лежат в интервале от средней арифметической до средней квадратичной скорости;
 - д) числу молекул, скорости которых больше средней скорости.
- **19.** В трех одинаковых сосудах находится одинаковое количество одного и того же газа при различных температурах. Температура газов в сосудах будет

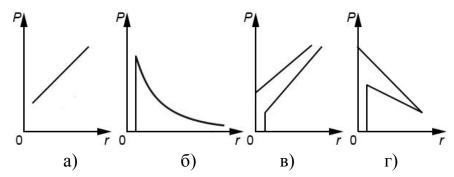
- a) $T_1 < T_2 < T_3$;
- 6) $T_1 > T_2 > T_3$;
- B) $T_2 > T_1 > T_3$.
- **20.** В трех одинаковых сосудах при равных условиях находится одинаковое количество водорода (H_2), гелия (H_2) и азота (N_2). Распределение скоростей молекул: 1) азота; 2) водорода; 3) гелия будет описывать кривая

- a) 3; б) 2; в) 1.
- **21.** В сосуде, разделенном на равные части неподвижной непроницаемой перегородкой, находится один и тот же газ при одинаковой температуре. Массы газа в левой и правой половинах сосуда равны соответственно M_1 и M_2 . Функции распределения $f(v) = \frac{dN}{dv}$ числа молекул газа по абсолютным значениям их скоростей для случая $M_1 > M_2$ представлены на рисунке

- **22.** Если объем изменится в 2 раза (эффективный диаметр молекул считать постоянным) среднее время свободного пробега молекул при изобарном нагревании газа
 - а) не изменится;


- б) изменится в 2 раза;
- в) изменится в $\sqrt{2}$ раз.
- **23.** При изобарическом расширении газа длина свободного пробега увеличилась в 3 раза. При этом среднее время свободного пробега (эффективный диаметр молекул считать постоянным)
 - а) увеличится в 3 раза;
 - б) уменьшится в 3 раза;
 - в) увеличится в 9 раз;
 - г) уменьшится в $\sqrt{3}$ раз;
 - д) увеличится в $\sqrt{3}$ раз.
 - 24. Закон Фурье для стационарного одномерного процесса имеет вид

a)
$$\delta Q = -\lambda \frac{dT}{dx} dS dt$$
;


$$\delta) \ j_m = -D \frac{d\rho}{dx};$$

$$F = \eta \left| \frac{dv}{dx} \right| S.$$

- **25.** Среднее время свободного пробега молекул при изотермическом охлаждении газа, если давление изменится в 4 раза (эффективный диаметр молекул считать постоянным)
 - а) изменится в 2 раза;
 - б) изменится в 4 раза;
 - в) не изменится.
- **26.** Газ находится в закрытом сосуде. При нагревании газа коэффициент теплопроводности
 - а) увеличивается; б) уменьшается; в) не изменяется.
- **27.** Зависимость удельного сопротивления полупроводника от температуры представлена на графике

28. Зависимость удельного сопротивления проводника от температуры в области сверхпроводящего перехода представлена на графике

- **29.** Спираль электронагревателя перегорела и была укорочена. В результате количество теплоты, выделяемое нагревателем в единицу времени,
 - а) увеличится;
 - б) уменьшится;
 - в) не изменится;
 - г) ответ зависит от сопротивления спирали.
- **30.** В области применяемых температур сопротивление проволоки растет с температурой
 - а) по линейному закону;
 - б) по квадратичному закону;
 - в) по кубическому закону.

ТЕСТ К ЛАБОРАТОРНОЙ РАБОТЕ № 4. Определение коэффициента внутреннего трения жидкости по методу Стокса

- **1.** Явление переноса, при котором наблюдается трение между движущимися слоями газа или жидкости, называется
 - а) диффузией;

- б) вязкостью;
- в) теплопроводностью;
- г) электропроводимостью.
- 2. Установить соответствие:
 - a) $\Delta m_1 = -D \frac{dS_1}{dZ} S \Delta t;$

1) внутреннее трение;

 $δ) ΔK = -η \frac{dV}{dZ} S Δt;$

2) диффузия;

 $B) F = \eta \left| \frac{dU}{dZ} \right| S;$

3) теплопроводность.

 $\Gamma) \Delta Q = -\chi \frac{dT}{dZ} S \Delta t.$

- 3. Физический смысл понятия потока импульса заключается в
 - а) силе:
- б) массе;
- в) температуре;
- г) скорости.
- 4. Выражение коэффициента вязкости, вытекающее из молекулярно-кинетических представлений, имеет вид

a)
$$\frac{1}{3} < v > \lambda$$
; б) $\frac{1}{\sqrt{2}\sigma n}$; в) $\frac{1}{3} < v > \lambda \rho c_v$; г) $\sqrt{2}\pi d^2 < v > n$; д) $\frac{1}{3} < v > \lambda \rho$.

- 5. Углекислый газ и азот находятся при одинаковых температурах и давлениях. Если принять эффективные сечения молекул одинаковыми, то отношение коэффициентов вязкости газов равно ...
 - a) 0,8;
- б) 1,0;
- в) 1.25: г) 1.57.
- 6. Выбрать верное утверждение:
- а) внутреннее трение свойство жидкостей и газов оказывать сопротивление при перемешивании одной части относительно другой;
 - б) внутреннее трение трение между движущимися слоями газа, жидкости;
- в) вязкость свойство жидкостей и газов оказывать сопротивление при перемещении одной их части относительно другой.
 - 7. Закон Ньютона для внутреннего трения имеет вид

- 8. Градиент скорости показывает
 - а) как меняется температура соседних слоев жидкости;
 - б) как быстро меняется скорость при переходе от слоя к слою;
 - в) как уменьшается вязкость с повышением температуры.
- **9.** Вязкость касторового масла при повышении температуры от 18 до 40 °C
 - а) уменьшится в 4 раза;
 - б) уменьшится в 2 раза;
 - в) увеличится в 2 раза.
- 10. На шарик, движущийся в вязкой жидкости, не действуют
 - а) сила упругости;
 - б) сила трения;
 - в) сила Архимеда;
 - г) сила тяжести;
 - д) сила Стокса.
- 11. Сила Стокса при движении шарика в вязкой жидкости направлена
 - а) вниз;
- б) вверх;
- в) вдоль силы тяжести.

- 12. Движение прилегающих к шару слоев жидкости должно быть
 - а) турбулентным; б) ламинарным; в) ускоренным; г) замедленным.
- 13. Число Рейнольдса при движении шара в вязкой жидкости
- 14. Формула Стокса имеет вид

- 15. Ламинарным называют движение,
 - а) когда слои жидкости как бы скользят друг относительно друга;
 - б) когда слои жидкости движутся навстречу друг другу;
 - в) когда слои жидкости движутся с ускорением навстречу друг другу.
- 16. Турбулентным называют движение,
- а) в каждой точке жидкости которого возникают составляющие скорости, параллельные к оси трубки;
- б) в каждой точке жидкости которого происходят беспорядочные отклонения вектора скорости от его среднего движения;
 - в) в каждой точке жидкости которого происходят завихрения.
 - 17. Явление сверхтекучести открыл
 - а) Д. Г. Стокс; б) П. Л. Капица; в) Ж. Л. М. Пуазейль.
- **18.** Уравнение Бернулли не применимо к вязким жидкостям, так как часть энергии внутри трубки тока
 - а) превращается в тепло;
 - б) превращается в работу;
 - в) переходит в энергию взаимодействия.
 - 19. Скорость шарика в вязкой жидкости
 - а) пропорциональна квадрату его радиуса;
 - б) пропорциональна кубу его радиуса;
 - в) обратно пропорциональна квадрату его радиуса.
 - 20. Прибор, определяющий вязкость, называется
 - а) альтиметром; б) вискозиметром; в) манометром.
 - 21. Скорость течения жидкости в трубе наибольшая
 - а) у стенок трубы;
 - б) в центре трубы;
 - в) в конце трубы;
 - г) в начале трубы.

- 22. Сила, направленная перпендикулярно к потоку жидкости, при движении тела, обладающего несимметрией, называется
 - а) силой лобового сопротивления;
 - б) подъемной силой;
 - в) силой вязкости.
- **23.** Коэффициент внутреннего трения η_1 кислорода больше коэффициента внутреннего трения η_2 азота (температура газов одинакова)
 - а) в 1,07 раз; б) в 2 раза; в) в 2,15 раз.
- **24.** Радиус четвертой зоны Френеля для плоского волнового фронта $\rho_4 = 3$ мм. Радиус двенадцатой зоны из той же точки наблюдения будет равен
 - a) 5,2 mm; б) 3,4 мм; B) 6 MM; г) 9 мм.
- 25. При наблюдении дифракции на круглом отверстии в белом свете в точке C_0 будет видно $\begin{array}{c|c}
 M & G \\
 \hline
 C_0 \\
 \hline
 2 & 1
 \end{array}$
 - а) темное пятнышко;
 - б) светлое пятнышко;
 - в) цветное пятнышко;
 - г) разноцветные чередующиеся кольца.

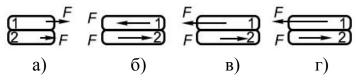
26. Разность фаз колебаний, происходящих в точках 1 и 2 (см. рис.), равна

N

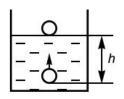
- **27.** На дифракционную решетку с периодом 3 мкм падает свет с $\lambda = 650$ нм. В этом случае наибольший порядок дифракционного максимума равен
 - a) 1; б) 2; в) 5;
 - 28. Выбрать верное утверждение:
- а) число зон Френеля, укладывающихся в щели, увеличится если щель вместо красного света осветить зеленым светом;
 - б) площадь третьей зоны Френеля равна площади первой зоны;
- в) на круглое отверстие падает плоская волна; амплитуда результирующего колебания в центре экрана $A = \frac{A_l}{2} \pm \frac{A_k}{2}$ (k – число зон Френеля);
- г) если в отверстии укладываются две зоны Френеля, то в центре экрана наблюдается минимум света.
- **29.** Если при температуре T = 0 °C вязкость кислорода равна 18,8 мкПа · c, то диаметр d молекулы кислорода равен
 - a) $3 \cdot 10^{-10}$ cm; 6) $5 \cdot 10^{-10}$ cm; B) $6 \cdot 10^{-10}$ cm.

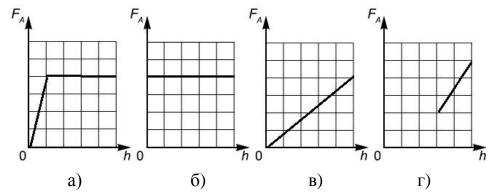
- 30. Выбрать верные утверждения:
- а) положение максимумов освещенности, созданных дифракционной решеткой, зависит от числа щелей;
- б) разность хода волн, идущих от краев соседних щелей дифракционной решетки, выражается формулой $\Delta = d \sin \phi$ ($\phi y \cos \phi$ дифракции);
 - в) интенсивность света І пропорциональна амплитуде;
- г) четкость дифракционной картины на экране зависит от периода дифракционной решетки.

ТЕСТ К ЛАБОРАТОРНОЙ РАБОТЕ № 5. Определение коэффициентов внутреннего трения и длины свободного пробега молекул воздуха

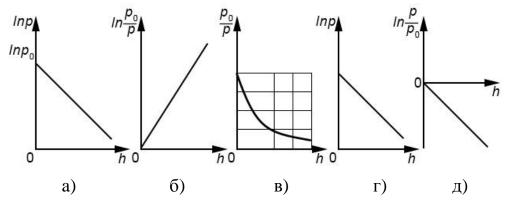

- **1.** Среднее время свободного пробега молекул при изобарном нагревании газа, если объем изменится в 2 раза (эффективный диаметр молекул считать постоянным),
 - а) не изменится; б) изменится в 2 раза; в) изменится в $\sqrt{2}$ раз.
- **2.** При изобарическом расширении газа длина свободного пробега увеличилась в 3 раза. Среднее время свободного пробега (эффективный диаметр молекул считать постоянным)
 - а) увеличится в 3 раза;
 - б) уменьшится в 3 раза;
 - в) увеличится в 9 раз;
 - г) уменьшится в $\sqrt{3}$ раз;
 - д) увеличится в $\sqrt{3}$ раз.
- **3.** Давление газа увеличилось в 2 раза. Как изменится средняя длина свободного пробега, если: а) температура не изменилась; б) температура увеличилась в 2 раза.
- **4.** Эффективный диаметр молекул постоянный. Среднее время свободного пробега молекул при изотермическом охлаждении газа, если давление изменится в 4 раза,
 - а) изменится в 2 раза; б) изменится в 4 раза; в) не изменится.
 - 5. Явление внутреннего трения возникает при наличии
 - а) градиента электрического заряда;
 - б) градиента концентрации;
 - в) градиента скорости слоев жидкости или газа;

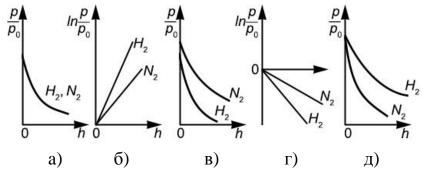
г) градиента массы;					
д) градиента температу	уры.				
6. Явление теплопровод	ности характеризу	ует перенос			
а) электрического заря	да;				
б) массы;					
в) импульса направлен	ного движения сл	оев жидкости или газа;			
г) энергии.					
7. Градиенты каких вели	чин вызывают явле	ения: а) теплопроводности; б) диф-			
фузии; в) внутреннего трен	ия (вязкости).				
8. Какие явления перен	оса способствуют	выравниванию: а) концентрации			
(плотности); б) температург	ы; в) скорости сло	ев жидкости и газа.			
9. Установить соответствие между параметром и математическим выраже-					
нием, вытекающим из моле	кулярно-кинетиче	еских представлений:			
a) $\frac{1}{3} < v > \lambda$;	$\mathfrak{G}) \; \frac{1}{\sqrt{2}\mathfrak{G}n};$	B) $\frac{1}{3} < v > \lambda \rho c_v$;			
a) $\frac{1}{3} < v > \lambda$; Γ) $\sqrt{2\pi}d^2 < v > \lambda \rho$;	μ д) $\frac{1}{2} < \nu > \lambda \rho$;	e) $\sqrt{\frac{mT}{r}}$.			
	3	γσ			
Параметр	3	у о Математическое выражение			
		•			
Параметр	проводности;	•			
Параметр 1) коэффициент теплог	проводности; сти;	•			
Параметр 1) коэффициент теплог 2) коэффициент вязкос	проводности; сти; узии;	•			
Параметр 1) коэффициент теплог 2) коэффициент вязкос 3) коэффициент диффу	проводности; сти; узии; одного пробега.	•			
Параметр 1) коэффициент теплог 2) коэффициент вязкос 3) коэффициент диффу 4) средняя длина свобо 10. Выбрать верные утво	проводности; сти; узии; одного пробега. ерждения:	•			
Параметр 1) коэффициент теплог 2) коэффициент вязкос 3) коэффициент диффу 4) средняя длина свобо 10. Выбрать верные утво	проводности; сти; узии; одного пробега. ерждения: обусловлено прит	Математическое выражение ———— ——— яжением между молекулами дви-			
Параметр 1) коэффициент теплов 2) коэффициент вязкос 3) коэффициент диффу 4) средняя длина свобо 10. Выбрать верные утвов а) внутреннее трение ображущихся относительно дру	проводности; сти; узии; одного пробега. ерждения: обусловлено прит г друга слоев газа;	Математическое выражение ———— ——— яжением между молекулами дви-			
Параметр 1) коэффициент теплов 2) коэффициент вязкос 3) коэффициент диффу 4) средняя длина свобо 10. Выбрать верные утво а) внутреннее трение о жущихся относительно дру б) коэффициент внутре	проводности; сти; узии; одного пробега. ерждения: обусловлено прита г друга слоев газа; еннего трения не з	Математическое выражение			
Параметр 1) коэффициент теплов 2) коэффициент вязкос 3) коэффициент диффу 4) средняя длина свобо 10. Выбрать верные утво а) внутреннее трение о жущихся относительно дру б) коэффициент внутре	проводности; сти; узии; одного пробега. ерждения: обусловлено прита г друга слоев газа; еннего трения не з	Математическое выражение ———— яжением между молекулами дви- ; ависит от давления газа;			
Параметр 1) коэффициент теплов 2) коэффициент вязкос 3) коэффициент диффу 4) средняя длина свобо 10. Выбрать верные утво а) внутреннее трение о жущихся относительно дру б) коэффициент внутро в) коэффициент внутро газа;	проводности; сти; узии; одного пробега. ерждения: обусловлено прита г друга слоев газа; еннего трения не з еннего трения уве.	Математическое выражение ———— яжением между молекулами дви- ; ависит от давления газа;			
Параметр 1) коэффициент теплов 2) коэффициент вязкос 3) коэффициент диффу 4) средняя длина свобо 10. Выбрать верные утво а) внутреннее трение о жущихся относительно дру б) коэффициент внутро в) коэффициент внутро газа;	проводности; сти; узии; одного пробега. ерждения: обусловлено прита г друга слоев газа; еннего трения не з еннего трения уве.	Математическое выражение ————— яжением между молекулами дви- ; ависит от давления газа; личивается с ростом температуры заключается в переносе импульса			
Параметр 1) коэффициент теплов 2) коэффициент вязкос 3) коэффициент диффу 4) средняя длина свобо 10. Выбрать верные утво а) внутреннее трение о жущихся относительно дру б) коэффициент внутро в) коэффициент внутро газа; г) механизм внутреннее направленного движения ме	проводности; сти; узии; одного пробега. ерждения: обусловлено прита г друга слоев газа; еннего трения не з еннего трения уве. его трения в газах олекул из одного с	Математическое выражение ————— яжением между молекулами дви- ; ависит от давления газа; личивается с ростом температуры заключается в переносе импульса			
Параметр 1) коэффициент теплов 2) коэффициент вязкос 3) коэффициент диффу 4) средняя длина свобо 10. Выбрать верные утво а) внутреннее трение о жущихся относительно дру б) коэффициент внутро в) коэффициент внутро газа; г) механизм внутреннее направленного движения ме	проводности; сти; узии; одного пробега. ерждения: обусловлено прита г друга слоев газа; еннего трения не з еннего трения уве. его трения в газах олекул из одного сеннего трения уме	Математическое выражение ———— яжением между молекулами дви- ; ависит от давления газа; личивается с ростом температуры заключается в переносе импульса слоя в другой;			
Параметр 1) коэффициент теплоп 2) коэффициент вязкос 3) коэффициент диффу 4) средняя длина свобо 10. Выбрать верные утво а) внутреннее трение о жущихся относительно дру б) коэффициент внутро в) коэффициент внутро газа; г) механизм внутреннее направленного движения мед) коэффициент внутро	проводности; сти; узии; одного пробега. ерждения: обусловлено прита г друга слоев газа; еннего трения не з еннего трения уве; олекул из одного с еннего трения уме; пературы	Математическое выражение ——————————————————————————————————			


г) динамическая вязкость жидкостей и газов не изменяется.


в) динамическая вязкость жидкостей уменьшается, газов – увеличивается;

12. Два смежных слоя в газе движутся со средними скоростями u_1 и u_2 , как показано на рисунке. Направление силы со стороны второго слоя на первый (и со стороны первого слоя на второй), если $u_1 > u_2$? представлено на рисунке


- **13.** Смежные слои газа 1, 2, 3 вследствие внутреннего трения движутся с разными средними скоростями ($u_1 > u_2 > u_3$). Вектор изменения импульса второго слоя $\Delta \vec{p}_2$, вызванного обменом молекулами между слоями, направлен
 - а) вниз от первого слоя; б) вправо;
 - в) влево; г) вверх от первого слоя.
- **14.** Шар объемом V, полностью погруженный в воду, начинает всплывать, пока полностью не окажется над водой. Зависимость глубины h от силы Архимеда представлена на рисунке



- **15.** На одной прямой находятся четыре одинаковых шарика: первый движется со скоростью v_0 , а остальные неподвижны. Отношение изменений модулей импульсов первого и четвертого шариков после абсолютно упругих центральных ударов равно
 - a) 0; б) 2; в) 4.
- **16.** Газ находится в закрытом сосуде. При нагревании газа коэффициент теплопроводности
 - а) увеличивается; б) уменьшается; в) не изменяется.
- **17.** Газ находится в закрытом сосуде. Зависит ли от средней скорости теплового движения молекул газа: 1) среднее число столкновений молекулы в 1 секунду с другими молекулами; 2) средняя длина свободного пробега молекул газа?
 - а) да, да; б) нет, нет; в) да, нет; г) нет, да.

- 18. Направленное перемещение молекул газа учитывает
 - а) закон диффузии; б) закон вязкости; в) закон теплопроводности.
- **19.** Какие коэффициенты переноса в газах, находящихся в состоянии континуума, не зависят от давления?
 - а) диффузии; б) вязкости; в) теплопроводности.
- **20.** График, отражающий зависимость атмосферного давления от высоты над поверхностью Земли (на уровне моря давление равно p_0), представлен на рисунке

21. В двух узких цилиндрических трубках находятся азот (N_2) и водород (H_2) , находящиеся в поле тяжести Земли при одинаковой температуре. Давление на дне судна равно p_0 . График, отражающий зависимость давления газов от высоты, отсчитываемой от дна сосуда, представлен на рисунке

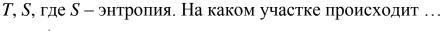
22. Атмосферное давление воздуха в два раза меньше, чем на Земле на высоте

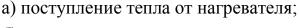
a)
$$\frac{2RT}{\mu g}$$
; б) $\frac{\ln 2RT}{\mu g}$; в) $\frac{\ln 2kT}{\mu g}$; г) $\frac{0.1 \ln 5RT}{\mu g}$; д) $\frac{\ln 0.5kT}{\mu g}$.

23. В двух одинаковых по вместимости сосудах находятся разные газы: в первом — водород (H_2), во втором — кислород (O_2). Отношение $\frac{n_1}{n_2}$ концентраций газов, если массы газов одинаковы, равно

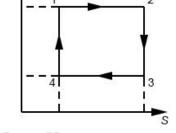
а) 0,0625; б) 16; в) 18.

- **24.** Средняя скорость молекулы кислорода при нормальных условиях равна 425,1 м/с. Длина свободного пробега молекулы, учитывая, что за 1 с каждая молекула претерпевает $6,57 \cdot 10^9$ столкновении, равна
 - a) $25 \cdot 10^{-5}$ m; 6) $6.5 \cdot 10^{-8}$ m; b) $60 \cdot 10^{-5}$ m; Γ) $5 \cdot 10^{-6}$ m.
- **25.** Характер зависимости средней длины λ и среднего времени τ свободного пробега молекул газа от температуры T и давления P

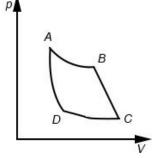

a)
$$\lambda \approx \frac{T}{P}$$
; $\tau \approx \sqrt{\frac{P}{T}}$; 6) $\lambda \approx \frac{P}{T}$; $\tau \approx \sqrt{\frac{P}{T}}$; $\tau \approx \frac{P}{T}$.


- **26.** Температуру газа увеличили в 4 раза при постоянной концентрации молекул. Как изменится при этом средняя длина λ и среднее время τ свободного пробега молекул? Эффективный диаметр молекул считать постоянным.
 - а) λ не изменится; τ уменьшится в 2 раза;
 - б) λ уменьшится в 2 раза; τ не изменится;
 - в) λ не изменится; τ уменьшится в 4 раза.
- **27.** Температуру газа увеличили в 4 раза при постоянном давлении. Как изменится при этом средняя длина λ и среднее время τ свободного пробега молекул? Эффективный диаметр молекул считать постоянным.
 - а) λ увеличивается в 2 раза; τ увеличивается в 4 раза;
 - б) λ увеличивается в 4 раза; τ увеличивается в 2 раза;
 - в) λ уменьшается в 4 раза; τ увеличивается в 2 раза.
- **28.** Поперечное эффективное сечение взаимодействия молекул равно σ . Эффективный диаметр d молекул равен

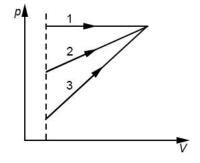
- **29.** На рисунке качественно показано распределение скорости жидкости по сечению круглой трубы. Сила вязкого трения, действующая на трубу, направлена
 - а) в сторону потока жидкости;
 - б) в противоположную сторону потока жидкости;
 - в) под углом, в сторону потока жидкости.
- **30.** Известны градиент температуры $\frac{dT}{dX}$ и теплопроводность χ . Выражение для вектора плотности потока теплоты Q имеет вид


ТЕСТ К ЛАБОРАТОРНОЙ РАБОТЕ № 6. Определение удельной теплоты кристаллизации и изменения энтропии при охлаждении олова

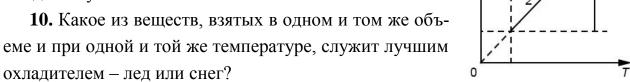
- 1. Как изменяется энтропия идеального газа в следующих процессах:
 - а) изотермическое расширение;
 - б) изотермическое сжатие;
 - в) адиабатическое расширение;
 - г) адиабатическое сжатие.
- **2.** Энтропия неизолированной термодинамической системы в процессе кристаллизации вещества
 - а) возрастает;
 - б) не изменяется;
 - в) уменьшается;
 - г) может уменьшаться или увеличиваться.
- **3.** На рисунке изображен цикл Карно в координатах T. S. гле S энтропия. На каком участке происходит



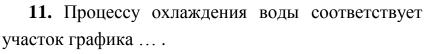
- б) передача тепла холодильнику;
- в) увеличение внутренней энергии газа;
- г) уменьшение внутренней энергии газа.

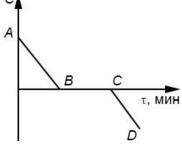


- **4.** На рисунке изображен цикл Карно в координатах P, V. На каком этапе происходит
 - а) изотермическое расширение газа;
 - б) изотермическое сжатие газа;
 - в) адиабатическое расширение газа;
 - г) адиабатическое сжатие газа.
- **5.** На рисунке изображен цикл Карно в координатах P, V. На каком этапе происходит



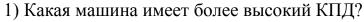
- а) увеличение температуры газа;
- б) уменьшение температуры газа;
- в) увеличение энтропии системы;
- г) уменьшение энтропии системы.
- **6.** Температура нагревателя идеального теплового двигателя 425 К, температура холодильника 300 К. Количество теплоты, полученное рабочим телом от нагревателя за цикл, равно 40 кДж. Рабочее тело за цикл совершает работу
 - а) 16,7 кДж;
- б) 3 кДж;
- в) 12 кДж;
- г) 97 кДж.


7. Идеальный газ переведен из исходного состояния в состояние *1*, *2*, *3*. Как изменяется энтропия системы в каждом случае?



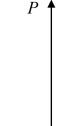
- **8.** В процессе плавления твердого тела подводимое тепло идет на разрыв межатомных (межмолекулярных) связей и разрушение дальнего порядка в кристаллах. При плавлении
 - а) внутренняя энергия тела не изменяется;
 - б) внутренняя энергия тела уменьшается;
 - в) внутренняя энергия тела увеличивается;
- г) внутренняя энергия тела равна совершению работы при разрыве межатомных связей.
- **9.** Идеальный газ переведен из исходного состояния в состояние 1, 2, 3. Как изменяется энтропия системы в каждом случае?

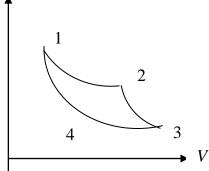
- а) лед, так как его плотность выше, чем у снега, и для плавления льда требуется больше тепла;
- б) снег, так как его плотность ниже, чем у льда, и для плавления снега требуется меньше тепла; T, ${}^{\circ}C$
- в) и снег, и лед одинаково охлаждают, так как взяты при одной и той же температуре.



- а) BC; б) AB; в) CD; г) ABC.
- **12.** Поздней осенью во время ледостава вблизи рек и озер теплее, чем на равнине, потому что
 - а) при кристаллизации воды выделяется тепло;
- б) при образовании льда вода остывает быстрее, а большие массивы земли остывают медленнее;
 - в) при кристаллизации тепло поглощается.
- **13.** Газ при охлаждении отдает такое же количество теплоты, какое было затрачено при его нагревании
 - а) в энергию движения молекул;

- б) во внутреннюю энергию;
- в) в кинетическую энергию.
- **14.** Холодильник забирает тепло у холодных предметов, охлаждая их. Работающий холодильник ...
 - а) нарушает первый закон термодинамики;
 - б) нарушает второй закон термодинамики;
 - в) нарушает третий закон термодинамики;
 - г) не нарушает ни один закон термодинамики.
- **15.** Некоторая система при температуре T получила элементарное количество теплоты dQ. Указать связь между этими величинами и приращением энтропии dS системы, если процесс: 1) квазистатический; 2) неквазистатический:


16. На рисунке изображены циклы ABCD и EFDL двух тепловых машин, работающих по циклам Карно. Площади, охватываемые двумя изотермами и двумя адиабатами, одинаковы.


- 2) Какая машина совершает большую работу?
- а) машина, работающая по циклу АВСО;
- б) машина, работающая по циклу *EFDL*;

в)
$$A_{ABCD} > A_{EFDL};$$
 г) $A_{ABCD} < A_{EFDL};$ д) $A_{ABCD} = A_{EFDL}.$

17. Идеальная тепловая машина работает по циклу Карно (две изотермы -1–2 и 3–4 и две адиабаты -2–3 и 4–1). В процессе адиабатического расширения 2–3 энтропия рабочего тела

- а) возрастает;
- б) уменьшается;
- в) не изменяется.

- **18.** Энтропия системы, состоящей из четырех частиц, распределенных между двумя половинками сосуда, как показано на рисунке, равна
 - a) kln2; б) kln4; в) kln6; г) kln16.
- **19.** В процессе обратимого адиабатического нагревания постоянной массы идеального газа его энергия
 - а) увеличивается; б) уменьшается; в) не изменяется.

- **20.** Идеальная тепловая машина за цикл работы получает от нагревателя 100~ кДж теплоты и отдает холодильнику 40~ кДж. КПД тепловой машины равен
 - a) 40 %; б) 60 %; в) 29 %; г) 43 %.
- **21.** Идеальный газ переведен из состояния *I* в состояние 2 тремя способами. Как изменяется энтропия системы в каждом случае? Процесс I и II квазистатический, III неквазистатический.
- **22.** Записать формулу первого начала термодинамики для идеального газа при
 - а) изотермическом процессе;
 - б) адиабатическом процессе;
 - в) изохорическом процессе;
 - г) изобарическом процессе.
- **23.** Температуру нагревателя тепловой машины уменьшили, оставив температуру холодильника неизменной. Количество теплоты, полученное газом от нагревателя за цикл, не изменилось. Как изменится при этом: 1) КПД теплового двигателя; 2) количество теплоты, отданное газом холодильнику; 3) работа газа за цикл?
 - а) увеличится; б) уменьшится; в) не изменится.
 - 24. Выбрать верные утверждения:
 - а) энтропия адиабатных систем всегда возрастает;
- б) энтропия адиабатных систем при любых обратимых процессах остается постоянной;
 - в) энтропия адиабатных систем всегда постоянна;
 - г) энтропия адиабатных систем в состоянии равновесия достигает максимума;
 - д) при адиабатном расширении газа в пустоту энтропия возрастает.
- **25.** Энтропия неизолированной термодинамической системы при плавлении
 - а) возрастает;
 - б) не изменяется;
 - в) уменьшается;
 - г) может уменьшаться или увеличиваться.
- **26.** При поступлении в неизолированную термодинамическую систему тепла в ходе необратимого процесса приращение энтропии будет

27. На теоретической изотерме реального газа жидкому состоянию вещества соответствует участок

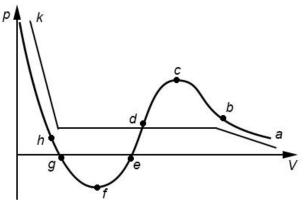
a) *hk*;

б) *gk*; $\mathbf{B}) f k;$ Γ) efk;

д) *cfk*.

28. На теоретической изотерме реального газа состояниям пересыщенного пара соответствует участок

a) *bc*;


б) *cd*;

 $\mathbf{B})$ bcd;

г) *ce*;

д) bcde.

29. На теоретической изотерме реального газа состоянию перегретой жидкости соответствует участок

a) *hg*;


б) *hf*;

 $\mathbf{B}) gf;$

г) *hfe*;

 $_{\rm I}$) hfd.

30. Дано семейство изотерм в координатах P, V. Критическому состоянию вещества на графике соответствует точка

а) e; б) f; в) g; г) b; д) c;

e) *a*;

 \mathbf{x}) d;

3) m; и) k;

к) *l*.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Основная

- 1. Демидченко, В. И. Физика : учеб. / В. И. Демидченко. 2-е изд., перераб. и доп. Ростов н/Д : Феникс, 2012. 573 с.
- 2. Трофимова, Т. И. Курс физики : учеб. пособие для вузов / Т. И. Трофимова. М. : Академия, 2010. 560 с.

Дополнительная

- 3. Волькенштейн, В. С. Сборник задач по общему курсу физики / В. С. Волькенштейн. 3-е изд., испр. и доп. СПб. : Книжный мир, 2006. 328 с.
- 4. Трофимова, Т. И. Сборник задач по курсу физики с решениями : учеб. пособие для вузов / Т. И. Трофимова, З. Г. Павлова. 4-е изд., стер. М. : Высшая школа, 2003. 591 с.
- 5. Физика. Статистическая физика и термодинамика : лаб. практикум / сост. Ю. Ф. Пугачев, Т. Н. Кодратова, В. В. Канонистов. Ульяновск : УВАУ ГА, 2003. 58 с.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Бабаджан, Е. И. Сборник качественных вопросов и задач по общей физике : учеб. пособие для втузов / Е. И. Бабаджан. М. : Наука, 1990. 400 с.
 - 2. ЕГЭ 2010 : сб. экзаменационных заданий. М. : Эксмо, 2010. 464 с.
- 3. Единый портал Интернет-тестирования в сфере образования. Режим доступа: http://www.i-exam.ru/. Загл. с экрана.
- 4. Коновалихин, С. В. Сборник качественных задач по физике / С. В. Коновалихин. М. : Квантум, 2010.
- 5. Общая физика. Механика : лаб. практикум / сост. К. Е. Никитин, Ю. Ф. Пугачев, Т. Н. Кодратова, Т. А. Савиновская. Ульяновск : УВАУ ГА(И), 2006. 67 с.
- 6. Федеральный Интернет-экзамен в сфере профессионального образования. Режим доступа: http://www.fepo-nica.ru/. Загл. с экрана.

Учебно-методическое пособие

ФИЗИКА

Тесты к лабораторным работам

В 2 частях

 $\it \mbox{\it Часть 2}$ Оптика и квантовая физика. Статистическая физика и термодинамика

Составители:

КОДРАТОВА
ТАТЬЯНА НИКОЛАЕВНА
ЛЕОНОВ
СЕРГЕЙ СЕРГЕЕВИЧ

Редактор М. Т. Любимова Компьютерная верстка И. А. Ереминой

Подписано в печать 22.06.2016. Формат $60\times90/16$. Бумага офсетная. Печать трафаретная. Усл. печ. л. 4,63. Уч.-изд. л. 4,54. Тираж 50 экз. Заказ № 231.